CAM LOBE PROFILE CATALOG

AN EXPANDED LISTING OF ALL CRANE CAMS LOBE PROFILES FOR PROFESSIONAL RACING ENGINE BUILDERS
CONTENTS

Lobe Selection, Ordering and Services 2–6

Hydraulic Flat Tappet Profiles 7–9

Hydraulic Roller Profiles 10–16
Hydraulic Roller Profiles 10–12
Application Specific LT4 and Vortec Hydraulic Roller Profiles 12
Chevrolet LS Engine Family Hydraulic Roller Lifter Profiles 13–15
CNG Powered Industrial Hydraulic Roller Profiles 15
Chevrolet 5.7–6.1 Gen3 Hemi Hydraulic Roller Profiles 15
Chevrolet Small Block Top Stock Hydraulic Roller Profiles 15

Mechanical Flat Tappet Profiles 17–22

Mechanical Roller Profiles 23–43
Mechanical Roller Profiles 23–42
Engine or Application Specific Mechanical Roller Profiles 42–43

Specialized Profiles 44–63
Flat Tappet Stock Lift Rules Applications 44–46
Flat Tappet and Hydraulic Roller Stock Lift Rules Applications 47
Hydraulic Roller Stock Lift Rules Applications 48
Specialty OHV and Flathead Applications 48–51
Mechanical Roller Profiles for Specialty OHV Applications 50–51
Direct Actuation Follower SOHC and DOHC Applications 51–53
Engine Specific for Direct Actuation Follower SOHC and DOHC Applications 54
Engine Specific for Translating Follower SOHC and DOHC 55–61

Harley–Davidson® V2 Profiles 62–63
Evolution™ 62
Twin-Cam™ 63

Camshaft Recommendation Form 64
Introduction

This latest version of our Cam Lobe Profile Catalog contains most of the recent and popular recommended lobe shapes that we currently advise. There are literally thousands of additional profiles available, from our early street and racing grinds, to antique restoration and factory replacement grinds dating back to the early 1900’s. Virtually any grind that Crane Cams has produced can still be provided.

If you have a specific requirement that isn’t listed, please contact our Performance Consultant staff at 866-388-5120 for additional information.

Custom Profile Cams

Although the Crane Cams catalog includes an extensive variety of camshafts, many applications occur that may require a camshaft selection not found in our standard listings. This is not an unusual happening at Crane Cams where custom ground camshafts are produced daily. We maintain the largest lobe profile library of any performance cam grinder, an accumulation that began with our founding in 1953.

We cover the entire spectrum of internal combustion engine applications, ranging from stationary power plants to Top Fuel dragsters. Prototype work is performed for a variety of clients from the giant Original Equipment Manufacturers to the individual engine builder/racer. Custom production runs are also commonplace for an equally diverse range of customers. Proprietary work is also a function of our diversity throughout the OEM and performance markets.

It is always recommended that our staff of Performance Consultants be contacted at 866-388-5120 as the first step in the initiation of a special camshaft order. Their combined decades of experience in all forms of camshaft applications can easily save the customer time (and money) when refining their particular combination.

Basic Rules to Follow When Considering a Custom-Ground Camshaft

Our hydraulic and mechanical profiles are designed for a particular finished lobe size and lifter diameter. Applying a lobe design to an engine having a smaller base circle diameter than the lobe is intended for, will probably cause the minimum radius of curvature (which usually occurs at, or near, the maximum lift point) to decrease to an unacceptable level. This will cause premature lobe and lifter failure.

Our hydraulic and mechanical roller profiles are also designed for a particular finished lobe size and lifter wheel diameter. These must be known to produce the proper finished cam grind.

Consideration is also given as to the type of valve train. Engines having an overhead valve style valve train (cam-lifter-pushrod-rocker arm-valve), can not utilize as much positive acceleration at the follower as those engines having direct-actuation valve trains (cam-follower-valve), due to the comparative stiffness of each style. Although the minimum tappet diameter and basic specifications may appear quite similar there are serious lobe design differences, mandating that these types not be interchanged.

Hydraulic and mechanical lobe profiles also have design differences, especially in the clearance ramps. Without going into great detail, you should never use hydraulic lifters on a mechanical lifter cam, nor is it advised to use mechanical lifters on a hydraulic lifter cam.

Crane Cams also has available lobe series for most SOHC and DOHC direct actuation and also translating “slipper” follower valve train engines. As virtually each of these engines utilize their own unique valve train geometry, lobe designs can not usually be interchanged among engines, even though their valve trains may appear identical in configuration.

Due to space limitations we cannot list all of these series here, and recommend that you contact the Crane Cams Performance Consultant staff for specific recommendations.

Notes on Minimum Tappet Diameter

For flat tappet grinds this is the smallest tappet face diameter advisable for use with the particular profile. Use of a smaller face diameter tappet will result in the lobe to lifter contact point going off of the edge of the tappet, usually causing immediate lobe and tappet wear and failure. A larger tappet can be used without this wear potential, however you may be sacrificing tappet velocity (which usually increases performance) if other profiles are available for larger tappets.

Common Values for Tappet Diameters

.842"	SB and BB Chevy, Pontiac and Buick V8
.875"	SB and BB Ford V8
.904"	Chrysler and AMC V8

For more information on Minimum Tappet Diameter and how it affects your application, call a Crane Cams Performance Consultant at 866-388-5120.
CAM LOBE PROFILE CATALOG

Important—Lobe Design Size When Choosing a Roller Grind

Our roller profiles are designed for a particular finished lobe size, as determined by roller wheel diameter or base circle radius requirements. We have provided a column indicating the Lobe Design Size for each of the listed profiles.

Coding

A	1.786” Nominal Journal Diameter
	Buick V6 and V8, Cadillac 368–500 V8, or special small base circle diameter, such as Chevrolet 262–400 V8 requiring connecting rod to cam clearance in long stroke applications.
B	1.868” Nominal Journal Diameter
	Chevrolet 262–400 and 348–409 V8, and Pontiac 265–455 V8
C	1.948”–1.968” or 50 mm Journal Diameter
D	2.036” Nominal Journal Diameter
	Ford 221–302 and 351C–400 V8, AMC V8
E	2.125” Nominal Journal Diameter
F	55 mm or 2.165” Nominal Journal Diameter
	Chevrolet LS1 V8, Ford LRB, and other engines.
J	57 mm or 2.245” Journal Diameter
	Chrysler 5.7–6.1L Hemi.
K	2.280” Journal Diameter
G	60 mm or 2.362” Nominal Journal Diameter
H	65 mm or 2.560” Nominal Journal Diameter

Some lobe designs have masters generated for more than one size category. These have been indicated where applicable. When a roller lobe designed for one journal size is applied to an engine having a different nominal journal size, a duration change will occur. For example, an “A” lobe ground on a “C” engine camshaft will realize a four-degree increase at 0.050” cam lift. There is usually a two-degree change between design size series. Caution must be used when selecting a larger sized lobe for a smaller lobe application. If a “D” lobe were used on an “A” application, not only would a duration loss of six degrees take place, but also a negative radius of curvature (inverted flank) may try to occur during the grinding process, resulting in a finished lobe shape that is not representative of the actual design. This may result in unstable valve train, possibly causing component failure.

Lobes that are intended to have this inverted flank (Crane Cams HIR and IR series) are carefully designed and manufactured using a special process to prevent this condition. Even so, HIR and IR camshafts are not normally advised for high RPM applications due to their relative harshness on the valve train.

Important—Lifter Wheel Size When Choosing a Roller Grind

Our roller profiles are also designed for a particular wheel size on the roller lifter.

Popular Wheel Diameters

.700”	Used on Many Hydraulic Roller Lifters
.750”	Used on Most .842” and .875” Diameter Mechanical Roller Lifters
.815”	Used on Most .904” Diameter Mechanical Roller Lifters
.850”	Used on Most .937” Diameter Mechanical Roller Lifters
.920”	Used on Most 1.000” and 1.062” Diameter Mechanical Roller Lifters

Consideration must be made when changing the size of the wheel from the usual diameter as this will affect the duration of the lobes. As the wheel diameter increases the duration also increases. The duration in the lower lobe lift areas (.001”–.025”) will not change very much, as the pressure angle between the lobe in the wheel is not greatly affected. However, at .050” lobe lift, as the wheel size increases, the duration will increase nearly two degrees for each diameter increment as listed above. Conversely, as the wheel diameter decreases the duration will also decrease. Lobe lift is not affected by the wheel diameter.

Be sure to specify what wheel diameter that you will be using, as the desired opening and closing figures (and duration) may not be obtained if this isn’t compensated for. Many lobe profiles have been generated for more than one wheel size in order to produce the proper lifter motion for these changes.
Special Cam Services Price Schedule
The following basic price schedule (which is subject to change without notice) covers services offered. Additional quotes will be submitted on request. All prices are FOB, Daytona Beach, FL.

Design

Cam Profile Design—Inelastic system with Accelerated Ramps. Lift table with velocities and accelerations in one degree spacing will be furnished.

| Each Profile | Call for Quote |

Cam Profile Design

Inelastic system with Accelerated Ramps, for slipper follower type applications. Lift table with velocities and accelerations in one degree spacing will be furnished.

| Each Profile | Call for Quote |

Profile Smoothing

Computer smoothing of your cam profile design. Performs smooth blending of ramps, nose and roughness-smoothed. Lift table will be furnished.

| Each Profile | Call for Quote |

Tooling (Plate or Masters)

Generate Van Norman/Berco Plate Master Cam Profile. Grind to five decimal place data. (Included verification check of submitted design for errors.)

| Each Valve Profile | Call for Quote |

Generate Van Norman/Berco Plate for customer-supplied camshaft. (Includes base circle runout correction.)

| Each Single Pattern Plate | Call for Quote |
| Each Dual Pattern Plate Set | Call for Quote |

Manufacture

Grind customer’s round lobe 8620 steel billet camshaft core—includes copper plate, rough grind, heat treat and finish grind. For roller camshafts that require base circle undercutting, an additional labor charge is required.

Each 1 Cyl. Camshaft	Labor PN 98070
Each 4 Cyl. Camshaft	Labor PN 98071
Each 6 Cyl. Camshaft	Labor PN 98072
Each V8 Camshaft	Labor PN 98064
Each V8 Camshaft	Labor PN 98085

Grind Crane Cams round lobe 8620 steel billet camshaft core. For roller follower camshafts that require base circle undercutting, an additional labor charge is required.

Most V8 Round Lobe Steel Billet Cams Includes Core	Labor PN 98061
Most 6 Cyl. Round Lobe Steel Billet Cams, Includes Core	Labor PN 98086
Most 4 Cyl. Round Lobe Steel Billet Cams, Includes Core	Labor PN 98062

Grind one sample camshaft from customer’s unground lobe camshaft and inspect for conformance to design data. Customer to furnish semi-finished cam billet if Crane Cams billet is not available.

| Each Camshaft | Call for Quote |
Prototype Cam Services

Crane Cams utilizes computer programs to perform precision cam profile measurements and design analysis. This enables Crane Cams to constantly update and improve their entire product line, plus prototype development for other cam and engine manufacturers.

Crane Cams offers a broad scope of services and capabilities from a single source—a unique and extremely advantageous feature. This multi-faceted service can provide a complete package of engine cam development and manufacturing, from design through sample cams for developmental evaluation at a low total cost.

The “as measured” cam profile analysis services are the most accurate measurement and analysis data currently available in the industry. A precision measurement facility is located in the Crane Cams facility and is used in many phases of Crane Cams’ production and development work, as well as by various other engine and cam manufacturers.

Sharing equal importance with the physical measurements are the computer analysis techniques employed in processing the “as measured” data. This process permits a broad and accurate analysis of the data with corrections to systematic and random errors, which occur in all measurement procedures. The resulting computer printout is an exceedingly accurate lift data (to the nearest 10 millionths of an inch) of the actual measured profile. This data can then be immediately compared to the design data.

One outstanding feature of the cam profile analysis program allows one degree (or 2½ degree) design data to be read into the computer, which will immediately return printout cutting data in one-half degree increments. This unique feature permits a model cam to be generated on one-half degree increments of maximum accuracy, even though the original design was tabulated in one-degree increments.

Only the latest equipment is incorporated into the extensive cam development facilities at Crane Cams. Equipment is only as good as the people that use it, however, and Crane Cams personnel have been one of the main keys to the firm’s successful rise to the “Number One” rating in the high performance cam industry. Crane Cams fully appreciates the importance of care, accuracy, speed and competence, and reflects this concern in its total involvement in all cam facets, from design through volume production.
Tooling

From design data, the first step in cam profile production is the generation of the master cam lobe. At Crane Cams this is the most critical and precision step in cam profile manufacturing, since every step from this point forward can result in possible accumulative errors and deviations from the desired profile, requiring extreme detail and attention to be applied to the project.

From the master cam blank, a rough cam shape is first rough ground on a cam grinder. The final rough and finish grinding is performed on a numerically controlled grinder. The grinder has a basic resolution of one millionth of an inch, with a complete system resolution of 10 millionths of an inch, and a grinding accuracy and repeatability of plus or minus 15 millionths.

Manufacturing

Crane Cams utilizes Landis, Berco, Van Norman and Norton Automatic cam grinders for production cam grinding. If production volume run cams are desired, Crane Cams offers the highest quality at competitive prices, backed up by the fastest delivery possible.

Inspection

Crane Cams production run inspection procedures, designed to check production cams for accuracy, plus establishing performance parameters of a given camshaft of profile, is a very useful and rapid measuring device (Adcole 911) with resolution to .0001 inch and one-quarter of one degree.

A custom-built dynamic inspection machine is utilized in many critical inspection areas to rapidly indicate acceleration, velocity, displacement and jerk of a model, or sample cam profile. Relative smoothness can be instantly reviewed for comparison, as well as lobe-to-lobe variations in profiles. The viewed trace on the oscilloscope truly gives a “fingerprint” of the cam profile almost instantly, and with a minimum of set-up.

Conclusions can be quickly established relating to dynamic problems due to design or manufacture. This machine is also utilized to select optimum lobes, average lobes, or worst lobes, for further inspection and analysis, or for copying profiles on developmental or test cams.

Also located at the Crane Cams facility in Daytona Beach, FL, is the physical measurement equipment. Another custom designed installation, this machine performs precise measurement of “as made” cam profiles, conducts mathematical analysis to correct for systematic and random errors, and provides velocity and acceleration data.

Features include a basic resolution of .000010 inch and two arc seconds. An extremely high accuracy of 20 millionths of an inch (mean standard deviation) is maintained through the operating system employed and close temperature control of the measurement room. Ground and lapped carbide utilized as cam followers, maintain high precision and accuracy.

Our Adcole gauge is considered to be the standard of the industry for camshaft design verification and production. This is the measuring equipment virtually demanded by the original equipment manufacturers for quality control purposes. Measurements are precise to within 1/10 micron (0.0001 mm) and 0.001 degrees. Computer-aided control combines extreme accuracy with speed, and provides for complete plot traces of deviations from the programmed standards.

Lobe Profile Nomenclature

Example:

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Duration at .050” Lobe Lift</th>
<th>Lobe Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>F - 262 / 3734</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H Hydraulic
HR Hydraulic Roller
F Mechanical Flat Tappet
R Mechanical Roller Lifter
HYDRAULIC FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
<tr>
<td>HP-184/2454</td>
<td>240</td>
<td>.0040</td>
<td>85</td>
<td>.019</td>
<td>.009</td>
</tr>
<tr>
<td>HP-194/2654</td>
<td>250</td>
<td>.0040</td>
<td>101</td>
<td>.030</td>
<td>.014</td>
</tr>
<tr>
<td>HP-204/2800</td>
<td>260</td>
<td>.0040</td>
<td>113</td>
<td>.044</td>
<td>.022</td>
</tr>
<tr>
<td>HP-208/2795</td>
<td>264</td>
<td>.0040</td>
<td>114</td>
<td>.050</td>
<td>.026</td>
</tr>
<tr>
<td>HP-214/2947</td>
<td>270</td>
<td>.0040</td>
<td>124</td>
<td>.059</td>
<td>.032</td>
</tr>
<tr>
<td>HP-218/2942</td>
<td>274</td>
<td>.0040</td>
<td>125</td>
<td>.066</td>
<td>.037</td>
</tr>
<tr>
<td>HP-224/3100</td>
<td>280</td>
<td>.0040</td>
<td>135</td>
<td>.076</td>
<td>.044</td>
</tr>
<tr>
<td>HP-228/2942</td>
<td>284</td>
<td>.0040</td>
<td>134</td>
<td>.083</td>
<td>.050</td>
</tr>
<tr>
<td>HP-234/3254</td>
<td>290</td>
<td>.0040</td>
<td>145</td>
<td>.093</td>
<td>.059</td>
</tr>
<tr>
<td>HP-244/3400</td>
<td>300</td>
<td>.0040</td>
<td>155</td>
<td>.110</td>
<td>.075</td>
</tr>
<tr>
<td>HP-254/3554</td>
<td>310</td>
<td>.0040</td>
<td>165</td>
<td>.128</td>
<td>.092</td>
</tr>
<tr>
<td>HP-264/3700</td>
<td>320</td>
<td>.0040</td>
<td>175</td>
<td>.145</td>
<td>.109</td>
</tr>
</tbody>
</table>

HP hydraulic series intended for conservative street use and factory performance upgrades. Designed for .842” diameter or larger tappets.

HMV (Hydraulic Maximum Velocity) hydraulic series intended for mid-range torque and street use, also fuel economy. Designed to make maximum use of .842” diameter tappets.

Z The Z hydraulic lobes are our most aggressive series for use with .842” diameter tappets. Short seat timing with maximum area under the curve provides outstanding performance.
HYDRAULIC FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>.104 DEG. INTAKE</td>
<td>.114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

CCH1 hydraulic series created for performance hydraulic applications requiring higher engine speeds on smaller diameter lobes. Designed for .842” diameter or larger tappets.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Intake</th>
<th>Exhaust</th>
<th>Advertised Dur.</th>
<th>Lobe Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-194/250</td>
<td>90</td>
<td>.031</td>
<td>.015</td>
<td>.375</td>
<td>.400</td>
<td>.425</td>
</tr>
<tr>
<td>H-198/255</td>
<td>97</td>
<td>.036</td>
<td>.017</td>
<td>.383</td>
<td>.408</td>
<td>.434</td>
</tr>
<tr>
<td>H-202/260</td>
<td>102</td>
<td>.042</td>
<td>.020</td>
<td>.390</td>
<td>.416</td>
<td>.442</td>
</tr>
<tr>
<td>H-210/270</td>
<td>112</td>
<td>.053</td>
<td>.028</td>
<td>.405</td>
<td>.432</td>
<td>.459</td>
</tr>
<tr>
<td>H-214/275</td>
<td>117</td>
<td>.059</td>
<td>.032</td>
<td>.413</td>
<td>.440</td>
<td>.468</td>
</tr>
<tr>
<td>H-218/280</td>
<td>122</td>
<td>.065</td>
<td>.037</td>
<td>.420</td>
<td>.448</td>
<td>.476</td>
</tr>
<tr>
<td>H-226/290</td>
<td>131</td>
<td>.078</td>
<td>.047</td>
<td>.435</td>
<td>.464</td>
<td>.493</td>
</tr>
<tr>
<td>H-230/295</td>
<td>135</td>
<td>.084</td>
<td>.053</td>
<td>.443</td>
<td>.472</td>
<td>.502</td>
</tr>
<tr>
<td>H-234/300</td>
<td>140</td>
<td>.091</td>
<td>.059</td>
<td>.450</td>
<td>.480</td>
<td>.510</td>
</tr>
<tr>
<td>H-242/310</td>
<td>149</td>
<td>.105</td>
<td>.071</td>
<td>.465</td>
<td>.496</td>
<td>.527</td>
</tr>
<tr>
<td>H-250/320</td>
<td>158</td>
<td>.118</td>
<td>.084</td>
<td>.480</td>
<td>.512</td>
<td>.544</td>
</tr>
</tbody>
</table>

CCH2 hydraulic series created for performance hydraulic applications requiring even higher engine speeds. Designed for .842” diameter or larger tappets.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Intake</th>
<th>Exhaust</th>
<th>Advertised Dur.</th>
<th>Lobe Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-190/260</td>
<td>93</td>
<td>.027</td>
<td>.014</td>
<td>.390</td>
<td>.416</td>
<td>.442</td>
</tr>
<tr>
<td>H-194/265</td>
<td>98</td>
<td>.032</td>
<td>.016</td>
<td>.398</td>
<td>.424</td>
<td>.451</td>
</tr>
<tr>
<td>H-198/270</td>
<td>103</td>
<td>.037</td>
<td>.019</td>
<td>.405</td>
<td>.432</td>
<td>.459</td>
</tr>
<tr>
<td>H-202/275</td>
<td>108</td>
<td>.042</td>
<td>.022</td>
<td>.413</td>
<td>.440</td>
<td>.468</td>
</tr>
<tr>
<td>H-206/280</td>
<td>112</td>
<td>.047</td>
<td>.025</td>
<td>.420</td>
<td>.448</td>
<td>.476</td>
</tr>
<tr>
<td>H-210/285</td>
<td>116</td>
<td>.053</td>
<td>.029</td>
<td>.428</td>
<td>.456</td>
<td>.484</td>
</tr>
<tr>
<td>H-214/290</td>
<td>121</td>
<td>.059</td>
<td>.033</td>
<td>.435</td>
<td>.464</td>
<td>.493</td>
</tr>
<tr>
<td>H-218/295</td>
<td>125</td>
<td>.065</td>
<td>.037</td>
<td>.443</td>
<td>.472</td>
<td>.502</td>
</tr>
<tr>
<td>H-222/3001</td>
<td>129</td>
<td>.071</td>
<td>.042</td>
<td>.450</td>
<td>.480</td>
<td>.510</td>
</tr>
<tr>
<td>H-226/305</td>
<td>134</td>
<td>.078</td>
<td>.047</td>
<td>.458</td>
<td>.488</td>
<td>.519</td>
</tr>
<tr>
<td>H-230/3101</td>
<td>138</td>
<td>.084</td>
<td>.053</td>
<td>.465</td>
<td>.496</td>
<td>.527</td>
</tr>
<tr>
<td>H-234/315</td>
<td>142</td>
<td>.091</td>
<td>.058</td>
<td>.473</td>
<td>.504</td>
<td>.536</td>
</tr>
<tr>
<td>H-238/320</td>
<td>146</td>
<td>.098</td>
<td>.064</td>
<td>.480</td>
<td>.512</td>
<td>.544</td>
</tr>
<tr>
<td>H-242/325</td>
<td>150</td>
<td>.104</td>
<td>.070</td>
<td>.488</td>
<td>.520</td>
<td>.553</td>
</tr>
<tr>
<td>H-246/330</td>
<td>155</td>
<td>.111</td>
<td>.077</td>
<td>.495</td>
<td>.528</td>
<td>.561</td>
</tr>
<tr>
<td>H-254/340</td>
<td>163</td>
<td>.125</td>
<td>.090</td>
<td>.510</td>
<td>.544</td>
<td>.578</td>
</tr>
</tbody>
</table>

H1 hydraulic series created for engines with large diameter lobes and long rocker ratios, such as big block Chevrolet, used in performance and marine applications. Designed for .842” diameter or larger tappets.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Intake</th>
<th>Exhaust</th>
<th>Advertised Dur.</th>
<th>Lobe Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-220/307</td>
<td>128</td>
<td>.067</td>
<td>.040</td>
<td>.461</td>
<td>.491</td>
<td>.522</td>
</tr>
<tr>
<td>H-226/314</td>
<td>134</td>
<td>.076</td>
<td>.047</td>
<td>.471</td>
<td>.502</td>
<td>.534</td>
</tr>
<tr>
<td>H-230/318</td>
<td>138</td>
<td>.082</td>
<td>.053</td>
<td>.477</td>
<td>.509</td>
<td>.541</td>
</tr>
<tr>
<td>H-236/325</td>
<td>144</td>
<td>.092</td>
<td>.061</td>
<td>.488</td>
<td>.520</td>
<td>.553</td>
</tr>
<tr>
<td>H-240/329</td>
<td>148</td>
<td>.098</td>
<td>.067</td>
<td>.494</td>
<td>.526</td>
<td>.559</td>
</tr>
<tr>
<td>H-246/336</td>
<td>154</td>
<td>.108</td>
<td>.076</td>
<td>.504</td>
<td>.538</td>
<td>.571</td>
</tr>
<tr>
<td>H-250/340</td>
<td>158</td>
<td>.115</td>
<td>.082</td>
<td>.510</td>
<td>.544</td>
<td>.578</td>
</tr>
</tbody>
</table>

Continued on next page.
HYDRAULIC FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.500</td>
</tr>
<tr>
<td>H1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-254/344</td>
<td>314</td>
<td>.0042</td>
<td>.052</td>
<td>.032</td>
<td>.420</td>
</tr>
<tr>
<td>H-262/353</td>
<td>322</td>
<td>.0042</td>
<td>.063</td>
<td>.039</td>
<td>.440</td>
</tr>
<tr>
<td>H-270/362</td>
<td>330</td>
<td>.0042</td>
<td>.070</td>
<td>.045</td>
<td>.450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HC904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-210/280</td>
<td>260</td>
<td>.0110</td>
<td>.052</td>
<td>.032</td>
<td>.420</td>
</tr>
<tr>
<td>H-218/293</td>
<td>270</td>
<td>.0100</td>
<td>.063</td>
<td>.039</td>
<td>.440</td>
</tr>
<tr>
<td>H-224/300</td>
<td>280</td>
<td>.0090</td>
<td>.070</td>
<td>.045</td>
<td>.450</td>
</tr>
<tr>
<td>H-225/320</td>
<td>280</td>
<td>.0090</td>
<td>.073</td>
<td>.046</td>
<td>.480</td>
</tr>
<tr>
<td>H-230/306</td>
<td>290</td>
<td>.0080</td>
<td>.079</td>
<td>.052</td>
<td>.459</td>
</tr>
<tr>
<td>H-230/3201</td>
<td>300</td>
<td>.0080</td>
<td>.079</td>
<td>.052</td>
<td>.480</td>
</tr>
<tr>
<td>H-235/346</td>
<td>290</td>
<td>.0080</td>
<td>.090</td>
<td>.059</td>
<td>.519</td>
</tr>
<tr>
<td>H-245/366</td>
<td>300</td>
<td>.0080</td>
<td>.111</td>
<td>.075</td>
<td>.549</td>
</tr>
<tr>
<td>H2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-202/2880</td>
<td>274</td>
<td>.0040</td>
<td>.059</td>
<td>.023</td>
<td>.431</td>
</tr>
<tr>
<td>H-212/3040</td>
<td>284</td>
<td>.0040</td>
<td>.053</td>
<td>.032</td>
<td>.456</td>
</tr>
<tr>
<td>H-222/3200</td>
<td>294</td>
<td>.0040</td>
<td>.069</td>
<td>.044</td>
<td>.480</td>
</tr>
<tr>
<td>H-232/3360</td>
<td>304</td>
<td>.0040</td>
<td>.087</td>
<td>.058</td>
<td>.504</td>
</tr>
<tr>
<td>H-242/3520</td>
<td>314</td>
<td>.0040</td>
<td>.105</td>
<td>.073</td>
<td>.528</td>
</tr>
<tr>
<td>H-252/3680</td>
<td>324</td>
<td>.0040</td>
<td>.122</td>
<td>.089</td>
<td>.552</td>
</tr>
<tr>
<td>H-262/3840</td>
<td>334</td>
<td>.0040</td>
<td>.141</td>
<td>.107</td>
<td>.576</td>
</tr>
<tr>
<td>H3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-212/306</td>
<td>268</td>
<td>.0040</td>
<td>.056</td>
<td>.030</td>
<td>.459</td>
</tr>
<tr>
<td>H-220/320</td>
<td>276</td>
<td>.0040</td>
<td>.068</td>
<td>.040</td>
<td>.480</td>
</tr>
<tr>
<td>H-228/334</td>
<td>284</td>
<td>.0040</td>
<td>.082</td>
<td>.050</td>
<td>.501</td>
</tr>
<tr>
<td>H-236/348</td>
<td>292</td>
<td>.0040</td>
<td>.097</td>
<td>.063</td>
<td>.522</td>
</tr>
<tr>
<td>H-244/362</td>
<td>300</td>
<td>.0040</td>
<td>.112</td>
<td>.075</td>
<td>.543</td>
</tr>
<tr>
<td>H-248/369</td>
<td>304</td>
<td>.0040</td>
<td>.119</td>
<td>.082</td>
<td>.554</td>
</tr>
<tr>
<td>H-252/376</td>
<td>308</td>
<td>.0040</td>
<td>.127</td>
<td>.090</td>
<td>.564</td>
</tr>
<tr>
<td>H-256/383</td>
<td>312</td>
<td>.0040</td>
<td>.134</td>
<td>.097</td>
<td>.575</td>
</tr>
<tr>
<td>H-260/390</td>
<td>316</td>
<td>.0040</td>
<td>.142</td>
<td>.104</td>
<td>.585</td>
</tr>
</tbody>
</table>
HYDRAULIC ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG. IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

HYDRAULIC ROLLER PROFILES

HR1

HR1 hydraulic roller series created for high lift applications with good stability.

HR-206/313	268	.0040	124	.047	.026	.470	.501	.532	.551	B
HR-210/319	272	.0040	128	.053	.030	.479	.510	.542	.561	B C
HR-214/325	276	.0040	132	.059	.034	.488	.520	.553	.572	B C
HR-218/332	280	.0040	137	.065	.038	.498	.531	.564	.584	B
HR-222/339	284	.0040	141	.072	.043	.509	.542	.576	.597	B C
HR-226/345	288	.0040	145	.078	.048	.518	.552	.587	.607	B C
HR-230/352	292	.0040	150	.085	.053	.528	.563	.598	.620	B C
HR-234/359	296	.0040	154	.093	.058	.539	.574	.610	.632	B C
HR-238/365	300	.0040	158	.100	.064	.548	.584	.621	.642	B C
HR-240/372	302	.0040	161	.104	.067	.558	.595	.632	.655	C
HR-242/372	304	.0040	163	.108	.070	.558	.595	.632	.655	B C
HR-242/375	306	.0040	161	.104	.070	.563	.600	.638	.660	C
HR-244/372	306	.0040	164	.112	.074	.563	.595	.632	.655	C
HR-246/372	308	.0040	166	.116	.077	.558	.595	.632	.655	B C
HR-248/372	310	.0040	167	.119	.080	.558	.595	.632	.655	C
HR-250/372	312	.0040	170	.124	.084	.558	.595	.632	.655	B
HR-254/372	316	.0040	173	.131	.091	.558	.595	.632	.655	B C
HR-258/372	320	.0040	174	.139	.098	.558	.595	.632	.655	C
HR-260/372	322	.0040	177	.143	.102	.558	.595	.632	.655	C
HR-262/372	324	.0040	179	.146	.106	.558	.595	.632	.655	C
HR-270/372	332	.0040	183	.155	.118	.558	.595	.632	.655	B
HR-278/372	340	.0040	190	.169	.132	.558	.595	.632	.655	B

HR2

HR2 hydraulic roller series used for large cubic inch high lift applications.

HR-198/311	260	.0040	117	.041	.018	.467	.498	.529	.547	B D
HR-206/325	268	.0040	126	.047	.026	.488	.520	.553	.572	B
HR-210/332	272	.0040	131	.053	.030	.498	.531	.564	.584	B D
HR-222/352	284	.0040	144	.070	.041	.528	.563	.598	.620	B
HR-230/365	292	.0040	152	.084	.052	.548	.584	.620	.642	B
HR-238/378	300	.0040	160	.099	.064	.567	.605	.643	.665	B
HR-248/391	308	.0040	170	.120	.080	.586	.626	.665	.688	C
HR-252/391	316	.0040	174	.128	.088	.586	.626	.665	.688	C

HR3

HR3 hydraulic roller series for mild performance and emissions legal camshafts using stock springs. Designed for small block and big block Chevrolet size lobes.

HR-184/256	240	.0040	89	.022	.009	.384	.410	.435	.451	B C
HR-194/271	250	.0040	102	.032	.015	.407	.434	.461	.477	B C
HR-204/286	260	.0040	115	.044	.023	.429	.458	.486	.503	B C
HR-208/292	264	.0040	119	.050	.027	.438	.467	.496	.514	B C
HR-214/301	270	.0040	127	.059	.033	.452	.482	.512	.530	B C

Continued on next page.
<table>
<thead>
<tr>
<th>HYDRAULIC ROLLER PROFILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROFILE CODE</td>
</tr>
<tr>
<td>DEG.</td>
</tr>
<tr>
<td>HR3</td>
</tr>
<tr>
<td>HR-220/310</td>
</tr>
<tr>
<td>HR-226/319</td>
</tr>
<tr>
<td>HR-232/328</td>
</tr>
<tr>
<td>HR-238/337</td>
</tr>
<tr>
<td>HR4</td>
</tr>
<tr>
<td>HR-188/262</td>
</tr>
<tr>
<td>HR-198/278</td>
</tr>
<tr>
<td>HR-208/294</td>
</tr>
<tr>
<td>HR-218/310</td>
</tr>
<tr>
<td>HR6</td>
</tr>
<tr>
<td>HR-242/400</td>
</tr>
<tr>
<td>HR-246/400</td>
</tr>
<tr>
<td>HR-250/400</td>
</tr>
<tr>
<td>HR-254/400</td>
</tr>
<tr>
<td>HR-258/4001</td>
</tr>
<tr>
<td>HR-262/400</td>
</tr>
<tr>
<td>HR-266/400</td>
</tr>
<tr>
<td>HR-270/400</td>
</tr>
<tr>
<td>HR-274/400</td>
</tr>
<tr>
<td>HR-282/400</td>
</tr>
<tr>
<td>HRBR</td>
</tr>
<tr>
<td>HR-222/320</td>
</tr>
<tr>
<td>HR-226/3201</td>
</tr>
<tr>
<td>HR-234/354</td>
</tr>
<tr>
<td>HR-236/330</td>
</tr>
<tr>
<td>HR-236/340</td>
</tr>
<tr>
<td>HR-238/330</td>
</tr>
<tr>
<td>HR-242/350</td>
</tr>
<tr>
<td>HR-242/370</td>
</tr>
<tr>
<td>HR-258/350</td>
</tr>
<tr>
<td>HR-262/350</td>
</tr>
<tr>
<td>HR-264/314</td>
</tr>
<tr>
<td>HR-264/420</td>
</tr>
<tr>
<td>HR-268/350</td>
</tr>
<tr>
<td>HR-272/420</td>
</tr>
</tbody>
</table>
HYDRAULIC ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>HIR-182/2734</td>
<td>238</td>
<td>.0040</td>
<td>98</td>
<td>.020</td>
<td>.009</td>
</tr>
<tr>
<td>HIR-190/2867</td>
<td>246</td>
<td>.0040</td>
<td>108</td>
<td>.028</td>
<td>.013</td>
</tr>
<tr>
<td>HIR-194/2934</td>
<td>250</td>
<td>.0040</td>
<td>112</td>
<td>.032</td>
<td>.016</td>
</tr>
<tr>
<td>HIR-198/3000</td>
<td>254</td>
<td>.0040</td>
<td>117</td>
<td>.037</td>
<td>.018</td>
</tr>
<tr>
<td>HIR-202/3067</td>
<td>258</td>
<td>.0040</td>
<td>122</td>
<td>.042</td>
<td>.022</td>
</tr>
<tr>
<td>HIR-206/3134</td>
<td>262</td>
<td>.0040</td>
<td>126</td>
<td>.047</td>
<td>.025</td>
</tr>
<tr>
<td>HIR-210/3200</td>
<td>266</td>
<td>.0040</td>
<td>131</td>
<td>.053</td>
<td>.029</td>
</tr>
<tr>
<td>HIR-214/3267</td>
<td>270</td>
<td>.0040</td>
<td>135</td>
<td>.059</td>
<td>.033</td>
</tr>
<tr>
<td>HIR-218/3334</td>
<td>274</td>
<td>.0040</td>
<td>140</td>
<td>.066</td>
<td>.037</td>
</tr>
<tr>
<td>HIR-222/3400</td>
<td>278</td>
<td>.0040</td>
<td>144</td>
<td>.073</td>
<td>.042</td>
</tr>
<tr>
<td>HIR-226/3467</td>
<td>282</td>
<td>.0040</td>
<td>149</td>
<td>.080</td>
<td>.047</td>
</tr>
<tr>
<td>HIR-230/3534</td>
<td>286</td>
<td>.0040</td>
<td>153</td>
<td>.088</td>
<td>.053</td>
</tr>
<tr>
<td>HIR-234/3600</td>
<td>290</td>
<td>.0040</td>
<td>157</td>
<td>.095</td>
<td>.059</td>
</tr>
<tr>
<td>HIR-238/3667</td>
<td>294</td>
<td>.0040</td>
<td>161</td>
<td>.104</td>
<td>.065</td>
</tr>
<tr>
<td>HIR-242/3735</td>
<td>298</td>
<td>.0040</td>
<td>166</td>
<td>.112</td>
<td>.071</td>
</tr>
<tr>
<td>HIR-246/3800</td>
<td>304</td>
<td>.0040</td>
<td>167</td>
<td>.116</td>
<td>.079</td>
</tr>
<tr>
<td>HIR-254/3867</td>
<td>310</td>
<td>.0040</td>
<td>177</td>
<td>.136</td>
<td>.093</td>
</tr>
<tr>
<td>HIR-270/3867</td>
<td>326</td>
<td>.0040</td>
<td>190</td>
<td>.165</td>
<td>.123</td>
</tr>
</tbody>
</table>

APPLICATION SPECIFIC LT4 AND VORTEC HYDRAULIC ROLLER PROFILES

These profiles may be used in other applications. Consult with the Crane Cams technical staff for recommendations.

HRL4

Chevrolet small block V8 with LT4 heads, HRL4 hydraulic roller series, for applications having limited valve travel.

- **HR-238/350**: 302 .0040 155 .097 .064 .525 .560 B
- **HR-244/350**: 308 .0040 160 .109 .074 .525 .560 B
- **HR-250/350**: 314 .0040 164 .120 .083 .525 .560 B

HRCV

Chevrolet Vortec 350, HRCV hydraulic roller series, with .475" maximum lift rules.

- **HR-214/316**: 276 .0040 130 .058 .034 .474 B
- **HR-224/316**: 286 .0040 137 .074 .046 .474 B
<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

CHEVROLET LS ENGINE FAMILY HYDRAULIC ROLLER PROFILES

LSHR1

Chevrolet LS V8, LSHR1 hydraulic roller series, used in applications using stock valve springs and standard rocker arm ratio.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

LSHR2

Chevrolet LS V8, LSHR2 hydraulic roller series, with increased ramp rates and more area under the curve.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

LSHR3

Chevrolet LS V8, LSHR3 hydraulic roller series, used in applications requiring stable and quiet valve control.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Continued on next page.
HYDRAULIC ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHEVROLET LS ENGINE FAMILY HYDRAULIC ROLLER PROFILES

LSHR3
Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-220/3241</td>
<td>282 .0040</td>
<td>136 .068 .040</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-220/3333</td>
<td>281 .0040</td>
<td>140 .068 .040</td>
<td>.567 .600 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-222/3241</td>
<td>284 .0040</td>
<td>137 .071 .041</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-222/344</td>
<td>283 .0040</td>
<td>144 .072 .041</td>
<td>.585 .619 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-224/3241</td>
<td>286 .0040</td>
<td>139 .074 .045</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-224/344</td>
<td>285 .0040</td>
<td>146 .075 .045</td>
<td>.585 .619 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-228/3241</td>
<td>290 .0040</td>
<td>142 .081 .049</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-228/3333</td>
<td>289 .0040</td>
<td>146 .081 .049</td>
<td>.567 .600 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-228/344</td>
<td>287 .0040</td>
<td>149 .082 .049</td>
<td>.585 .619 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-228/353</td>
<td>290 .0040</td>
<td>149 .082 .051</td>
<td>.600 .635 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-232/3241</td>
<td>294 .0040</td>
<td>145 .088 .055</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-232/353</td>
<td>294 .0040</td>
<td>152 .089 .056</td>
<td>.600 .635 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-236/3241</td>
<td>298 .0040</td>
<td>148 .095 .062</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-236/353</td>
<td>298 .0040</td>
<td>155 .096 .062</td>
<td>.600 .635 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-238/3333</td>
<td>299 .0040</td>
<td>153 .100 .066</td>
<td>.567 .600 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-240/3241</td>
<td>302 .0040</td>
<td>150 .102 .068</td>
<td>.551 .583 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-240/353</td>
<td>302 .0040</td>
<td>158 .104 .068</td>
<td>.600 .635 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-246/353</td>
<td>308 .0040</td>
<td>162 .115 .078</td>
<td>.600 .635 F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LSHS347
Chevrolet LS V8, LSHS347 hydraulic roller series, used in high speed performance applications.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-216/347</td>
<td>273 .0040</td>
<td>140 .058 .038</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-218/347</td>
<td>275 .0040</td>
<td>141 .061 .041</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-220/347</td>
<td>276 .0040</td>
<td>143 .064 .043</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-222/347</td>
<td>278 .0040</td>
<td>144 .067 .046</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-224/3441</td>
<td>279 .0040</td>
<td>145 .071 .049</td>
<td>.585 .619 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-224/347</td>
<td>280 .0040</td>
<td>146 .071 .049</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-226/347</td>
<td>282 .0040</td>
<td>148 .074 .051</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-228/347</td>
<td>283 .0040</td>
<td>149 .078 .054</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-230/347</td>
<td>285 .0040</td>
<td>150 .082 .057</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-232/347</td>
<td>287 .0040</td>
<td>152 .085 .060</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-234/347</td>
<td>289 .0040</td>
<td>154 .089 .064</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-236/347</td>
<td>291 .0040</td>
<td>155 .093 .067</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-238/347</td>
<td>293 .0040</td>
<td>157 .097 .070</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-240/347</td>
<td>295 .0040</td>
<td>158 .100 .074</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-242/347</td>
<td>297 .0040</td>
<td>160 .104 .077</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-244/347</td>
<td>299 .0040</td>
<td>161 .108 .080</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-246/347</td>
<td>300 .0040</td>
<td>163 .112 .084</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-248/347</td>
<td>302 .0040</td>
<td>164 .115 .088</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-250/347</td>
<td>304 .0040</td>
<td>166 .119 .091</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-252/347</td>
<td>308 .0040</td>
<td>167 .123 .094</td>
<td>.590 .625 F</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydraulic Roller Profiles

Chevrolet LS Engine Family Hydraulic Roller Profiles

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. (Deg.)</th>
<th>Dur. at .050" Lobe Lift (Deg.)</th>
<th>Lobe Lift @ Intake (.0040")</th>
<th>Lobe Lift @ Exhaust (.0040")</th>
<th>Lobe Lift at Top Dead Center (.0040")</th>
<th>Gross Valve Lift with Zero Lash (F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSHS367</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-216/367</td>
<td>272</td>
<td>.0040</td>
<td>143</td>
<td>.058</td>
<td>.038</td>
<td>.624</td>
</tr>
<tr>
<td>HR-218/367</td>
<td>273</td>
<td>.0040</td>
<td>144</td>
<td>.061</td>
<td>.041</td>
<td>.624</td>
</tr>
<tr>
<td>HR-220/367</td>
<td>275</td>
<td>.0040</td>
<td>146</td>
<td>.064</td>
<td>.043</td>
<td>.624</td>
</tr>
<tr>
<td>HR-222/367</td>
<td>276</td>
<td>.0040</td>
<td>148</td>
<td>.067</td>
<td>.046</td>
<td>.624</td>
</tr>
<tr>
<td>HR-224/367</td>
<td>277</td>
<td>.0040</td>
<td>149</td>
<td>.071</td>
<td>.049</td>
<td>.624</td>
</tr>
<tr>
<td>HR-226/367</td>
<td>278</td>
<td>.0040</td>
<td>151</td>
<td>.074</td>
<td>.051</td>
<td>.624</td>
</tr>
<tr>
<td>HR-228/367</td>
<td>279</td>
<td>.0040</td>
<td>152</td>
<td>.078</td>
<td>.054</td>
<td>.624</td>
</tr>
<tr>
<td>HR-230/367</td>
<td>280</td>
<td>.0040</td>
<td>154</td>
<td>.082</td>
<td>.057</td>
<td>.624</td>
</tr>
<tr>
<td>HR-232/367</td>
<td>281</td>
<td>.0040</td>
<td>156</td>
<td>.086</td>
<td>.060</td>
<td>.624</td>
</tr>
<tr>
<td>HR-233/367</td>
<td>282</td>
<td>.0040</td>
<td>158</td>
<td>.089</td>
<td>.063</td>
<td>.624</td>
</tr>
<tr>
<td>HR-234/367</td>
<td>283</td>
<td>.0040</td>
<td>159</td>
<td>.093</td>
<td>.067</td>
<td>.624</td>
</tr>
<tr>
<td>HR-235/367</td>
<td>284</td>
<td>.0040</td>
<td>160</td>
<td>.097</td>
<td>.070</td>
<td>.624</td>
</tr>
<tr>
<td>HR-236/367</td>
<td>285</td>
<td>.0040</td>
<td>162</td>
<td>.101</td>
<td>.073</td>
<td>.624</td>
</tr>
<tr>
<td>HR-237/367</td>
<td>286</td>
<td>.0040</td>
<td>164</td>
<td>.105</td>
<td>.077</td>
<td>.624</td>
</tr>
<tr>
<td>HR-238/367</td>
<td>287</td>
<td>.0040</td>
<td>165</td>
<td>.109</td>
<td>.080</td>
<td>.624</td>
</tr>
<tr>
<td>HR-239/367</td>
<td>288</td>
<td>.0040</td>
<td>167</td>
<td>.113</td>
<td>.084</td>
<td>.624</td>
</tr>
<tr>
<td>HR-240/367</td>
<td>289</td>
<td>.0040</td>
<td>168</td>
<td>.117</td>
<td>.087</td>
<td>.624</td>
</tr>
<tr>
<td>HR-241/367</td>
<td>290</td>
<td>.0040</td>
<td>170</td>
<td>.121</td>
<td>.091</td>
<td>.624</td>
</tr>
<tr>
<td>HR-242/367</td>
<td>291</td>
<td>.0040</td>
<td>171</td>
<td>.125</td>
<td>.094</td>
<td>.624</td>
</tr>
<tr>
<td>HR-243/367</td>
<td>292</td>
<td>.0040</td>
<td>173</td>
<td>.129</td>
<td>.098</td>
<td>.624</td>
</tr>
<tr>
<td>HR-244/367</td>
<td>293</td>
<td>.0040</td>
<td>174</td>
<td>.133</td>
<td>.102</td>
<td>.624</td>
</tr>
<tr>
<td>HR-245/367</td>
<td>294</td>
<td>.0040</td>
<td>176</td>
<td>.136</td>
<td>.105</td>
<td>.624</td>
</tr>
<tr>
<td>HR-246/367</td>
<td>295</td>
<td>.0040</td>
<td>177</td>
<td>.140</td>
<td>.109</td>
<td>.624</td>
</tr>
<tr>
<td>HR-247/367</td>
<td>296</td>
<td>.0040</td>
<td>179</td>
<td>.143</td>
<td>.113</td>
<td>.624</td>
</tr>
<tr>
<td>HR-248/367</td>
<td>297</td>
<td>.0040</td>
<td>180</td>
<td>.147</td>
<td>.116</td>
<td>.624</td>
</tr>
<tr>
<td>HR-249/367</td>
<td>298</td>
<td>.0040</td>
<td>182</td>
<td>.150</td>
<td>.120</td>
<td>.624</td>
</tr>
<tr>
<td>HR-250/367</td>
<td>299</td>
<td>.0040</td>
<td>183</td>
<td>.154</td>
<td>.123</td>
<td>.624</td>
</tr>
<tr>
<td>HR-251/367</td>
<td>300</td>
<td>.0040</td>
<td>185</td>
<td>.157</td>
<td>.126</td>
<td>.624</td>
</tr>
<tr>
<td>HR-252/367</td>
<td>301</td>
<td>.0040</td>
<td>186</td>
<td>.160</td>
<td>.130</td>
<td>.624</td>
</tr>
<tr>
<td>LSHS382</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-220/382</td>
<td>276</td>
<td>.0040</td>
<td>148</td>
<td>.069</td>
<td>.041</td>
<td>.649</td>
</tr>
<tr>
<td>HR-230/382</td>
<td>286</td>
<td>.0040</td>
<td>156</td>
<td>.079</td>
<td>.057</td>
<td>.649</td>
</tr>
<tr>
<td>HR-240/382</td>
<td>297</td>
<td>.0040</td>
<td>164</td>
<td>.102</td>
<td>.073</td>
<td>.649</td>
</tr>
<tr>
<td>PROFILE CODE</td>
<td>ADVERTISED DUR. AT TAPPET LIFT</td>
<td>DUR. AT 200° TAPPET LIFT</td>
<td>TAPPET LIFT AT TOP DEAD CENTER</td>
<td>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</td>
<td>DESIGN LOBE SIZE CODE</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
<td>--------------------------</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>DUR. AT .050”/ LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>HRNG Chevrolet 454-502 and 8.1L V8, HRNG hydraulic roller series, used in CNG powered industrial applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-160/190</td>
<td>228</td>
<td>.0040</td>
<td>—</td>
<td>.007</td>
<td>.005</td>
<td>.323</td>
</tr>
<tr>
<td>HR-170/165</td>
<td>245</td>
<td>.0040</td>
<td>—</td>
<td>.017</td>
<td>.009</td>
<td>.281</td>
</tr>
<tr>
<td>HR-170/190</td>
<td>238</td>
<td>.0040</td>
<td>—</td>
<td>.013</td>
<td>.007</td>
<td>.323</td>
</tr>
<tr>
<td>HR-180/165</td>
<td>255</td>
<td>.0040</td>
<td>—</td>
<td>.024</td>
<td>.014</td>
<td>.281</td>
</tr>
<tr>
<td>HR-180/190</td>
<td>248</td>
<td>.0040</td>
<td>—</td>
<td>.020</td>
<td>.011</td>
<td>.323</td>
</tr>
<tr>
<td>HR-190/165</td>
<td>265</td>
<td>.0040</td>
<td>—</td>
<td>.032</td>
<td>.019</td>
<td>.281</td>
</tr>
<tr>
<td>HR-200/165</td>
<td>275</td>
<td>.0040</td>
<td>—</td>
<td>.042</td>
<td>.026</td>
<td>.281</td>
</tr>
<tr>
<td>HRH1 Chrysler 5.7–6.1L Hemi V8, HRH1 hydraulic roller series, with 57 mm journal diameter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-208/297</td>
<td>268</td>
<td>.0040</td>
<td>121</td>
<td>.022</td>
<td>.029</td>
<td>.505</td>
</tr>
<tr>
<td>HR-210/3236</td>
<td>268</td>
<td>.0040</td>
<td>131</td>
<td>.052</td>
<td>.028</td>
<td>.550</td>
</tr>
<tr>
<td>HR-214/297</td>
<td>274</td>
<td>.0040</td>
<td>125</td>
<td>.054</td>
<td>.036</td>
<td>.505</td>
</tr>
<tr>
<td>HR-216/3236</td>
<td>274</td>
<td>.0040</td>
<td>136</td>
<td>.062</td>
<td>.035</td>
<td>.550</td>
</tr>
<tr>
<td>HR-222/3236</td>
<td>280</td>
<td>.0040</td>
<td>140</td>
<td>.072</td>
<td>.042</td>
<td>.550</td>
</tr>
<tr>
<td>HR-228/3236</td>
<td>286</td>
<td>.0040</td>
<td>145</td>
<td>.083</td>
<td>.051</td>
<td>.550</td>
</tr>
<tr>
<td>HR7 IHRA Top Stock, HR7 hydraulic roller series, for restricted lift applications.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-260/330</td>
<td>316</td>
<td>.0040</td>
<td>174</td>
<td>.139</td>
<td>.102</td>
<td>.495</td>
</tr>
<tr>
<td>HR-264/330</td>
<td>320</td>
<td>.0040</td>
<td>178</td>
<td>.147</td>
<td>.109</td>
<td>.495</td>
</tr>
<tr>
<td>HR-268/330</td>
<td>324</td>
<td>.0040</td>
<td>182</td>
<td>.155</td>
<td>.117</td>
<td>.495</td>
</tr>
<tr>
<td>HR-272/330</td>
<td>328</td>
<td>.0040</td>
<td>186</td>
<td>.162</td>
<td>.124</td>
<td>.495</td>
</tr>
<tr>
<td>HR-276/330</td>
<td>332</td>
<td>.0040</td>
<td>191</td>
<td>.169</td>
<td>.132</td>
<td>.495</td>
</tr>
</tbody>
</table>
MECHANICAL FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104° DEG. INTAKE</td>
<td>114° DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

F1 mechanical series created for oval track and marine engines with higher rocker ratios, such as the big block Chevrolet, where stable upper RPM valve motion is required. Recommended lash is .026”.

<table>
<thead>
<tr>
<th>Code</th>
<th>Duration at .020”</th>
<th>Lobe Lift</th>
<th>Duration at 200° Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-236/3177</td>
<td>272</td>
<td>.0200</td>
<td>138</td>
<td>.082</td>
<td>.064</td>
<td>.477</td>
</tr>
<tr>
<td>F-246/3294</td>
<td>282</td>
<td>.0200</td>
<td>149</td>
<td>.098</td>
<td>.077</td>
<td>.494</td>
</tr>
<tr>
<td>F-256/3412</td>
<td>292</td>
<td>.0200</td>
<td>159</td>
<td>.115</td>
<td>.092</td>
<td>.512</td>
</tr>
<tr>
<td>F-266/3528</td>
<td>302</td>
<td>.0200</td>
<td>169</td>
<td>.131</td>
<td>.107</td>
<td>.529</td>
</tr>
<tr>
<td>F-276/3648</td>
<td>312</td>
<td>.0200</td>
<td>179</td>
<td>.148</td>
<td>.121</td>
<td>.547</td>
</tr>
<tr>
<td>F-286/3765</td>
<td>322</td>
<td>.0200</td>
<td>189</td>
<td>.165</td>
<td>.137</td>
<td>.565</td>
</tr>
</tbody>
</table>

F2 mechanical series created for street use and mid-range torque applications. Recommended lash is .022”.

<table>
<thead>
<tr>
<th>Code</th>
<th>Duration at .014”</th>
<th>Lobe Lift</th>
<th>Duration at 200° Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-198/270</td>
<td>260</td>
<td>.0140</td>
<td>102</td>
<td>.038</td>
<td>.023</td>
<td>.405</td>
</tr>
<tr>
<td>F-218/2933</td>
<td>280</td>
<td>.0140</td>
<td>122</td>
<td>.064</td>
<td>.038</td>
<td>.440</td>
</tr>
<tr>
<td>F-228/3067</td>
<td>290</td>
<td>.0140</td>
<td>134</td>
<td>.079</td>
<td>.050</td>
<td>.460</td>
</tr>
<tr>
<td>F-238/3200</td>
<td>300</td>
<td>.0140</td>
<td>144</td>
<td>.094</td>
<td>.063</td>
<td>.480</td>
</tr>
<tr>
<td>F-248/3334</td>
<td>310</td>
<td>.0140</td>
<td>155</td>
<td>.111</td>
<td>.078</td>
<td>.500</td>
</tr>
<tr>
<td>F-258/3468</td>
<td>320</td>
<td>.0140</td>
<td>165</td>
<td>.128</td>
<td>.092</td>
<td>.520</td>
</tr>
</tbody>
</table>

F3 mechanical series created for racing applications with stable valve control. This series has an excellent racing history. Designed to make full use of .842” diameter tappets. Recommended lash is .026”.

<table>
<thead>
<tr>
<th>Code</th>
<th>Duration at .020”</th>
<th>Lobe Lift</th>
<th>Duration at 200° Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-244/3454</td>
<td>280</td>
<td>.0200</td>
<td>152</td>
<td>.104</td>
<td>.072</td>
<td>.518</td>
</tr>
<tr>
<td>F-248/3514</td>
<td>284</td>
<td>.0200</td>
<td>156</td>
<td>.111</td>
<td>.078</td>
<td>.527</td>
</tr>
<tr>
<td>F-252/3574</td>
<td>288</td>
<td>.0200</td>
<td>160</td>
<td>.118</td>
<td>.084</td>
<td>.536</td>
</tr>
<tr>
<td>F-256/3634</td>
<td>292</td>
<td>.0200</td>
<td>164</td>
<td>.124</td>
<td>.091</td>
<td>.545</td>
</tr>
<tr>
<td>F-260/3694</td>
<td>296</td>
<td>.0200</td>
<td>169</td>
<td>.132</td>
<td>.097</td>
<td>.554</td>
</tr>
<tr>
<td>F-264/3754</td>
<td>300</td>
<td>.0200</td>
<td>172</td>
<td>.139</td>
<td>.104</td>
<td>.563</td>
</tr>
<tr>
<td>F-268/3814</td>
<td>304</td>
<td>.0200</td>
<td>177</td>
<td>.147</td>
<td>.109</td>
<td>.572</td>
</tr>
<tr>
<td>F-272/3874</td>
<td>308</td>
<td>.0200</td>
<td>180</td>
<td>.153</td>
<td>.117</td>
<td>.581</td>
</tr>
<tr>
<td>F-276/3934</td>
<td>312</td>
<td>.0200</td>
<td>184</td>
<td>.158</td>
<td>.124</td>
<td>.590</td>
</tr>
<tr>
<td>F-280/3994</td>
<td>316</td>
<td>.0200</td>
<td>189</td>
<td>.166</td>
<td>.132</td>
<td>.599</td>
</tr>
<tr>
<td>F-284/4054</td>
<td>320</td>
<td>.0200</td>
<td>192</td>
<td>.174</td>
<td>.139</td>
<td>.608</td>
</tr>
<tr>
<td>F-288/4114</td>
<td>324</td>
<td>.0200</td>
<td>196</td>
<td>.181</td>
<td>.145</td>
<td>.617</td>
</tr>
</tbody>
</table>

TLF mechanical series created for oval track racing. Designed to make full use of .842” diameter tappets. Recommended lash is .012”.

<table>
<thead>
<tr>
<th>Code</th>
<th>Duration at .016”</th>
<th>Lobe Lift</th>
<th>Duration at 200° Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-246/3467</td>
<td>282</td>
<td>.0160</td>
<td>155</td>
<td>.109</td>
<td>.076</td>
<td>.520</td>
</tr>
<tr>
<td>F-250/3534</td>
<td>286</td>
<td>.0160</td>
<td>159</td>
<td>.116</td>
<td>.082</td>
<td>.530</td>
</tr>
<tr>
<td>F-254/3600</td>
<td>290</td>
<td>.0160</td>
<td>163</td>
<td>.123</td>
<td>.087</td>
<td>.540</td>
</tr>
<tr>
<td>F-258/3667</td>
<td>294</td>
<td>.0160</td>
<td>167</td>
<td>.130</td>
<td>.094</td>
<td>.550</td>
</tr>
<tr>
<td>F-262/3734</td>
<td>298</td>
<td>.0160</td>
<td>171</td>
<td>.137</td>
<td>.100</td>
<td>.560</td>
</tr>
<tr>
<td>F-264/3767</td>
<td>300</td>
<td>.0160</td>
<td>173</td>
<td>.141</td>
<td>.104</td>
<td>.565</td>
</tr>
<tr>
<td>F-266/3800</td>
<td>302</td>
<td>.0160</td>
<td>175</td>
<td>.144</td>
<td>.107</td>
<td>.570</td>
</tr>
<tr>
<td>F-270/3867</td>
<td>306</td>
<td>.0160</td>
<td>179</td>
<td>.151</td>
<td>.114</td>
<td>.580</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL FLAT TAPPET PROFILES

TLF1

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>IN.</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>F-274/3934</td>
<td>310 .0160</td>
<td>183 .158 .121 .590</td>
<td>.629 .669 .692</td>
</tr>
<tr>
<td>F-278/4001</td>
<td>314 .0160</td>
<td>187 .165 .128 .600</td>
<td>.640 .680 .704</td>
</tr>
<tr>
<td>F-282/4067</td>
<td>318 .0160</td>
<td>191 .172 .135 .610</td>
<td>.651 .691 .716</td>
</tr>
</tbody>
</table>

F13 mechanical series created for racing mechanical flat tappet. Designed to make full use of .842” diameter tappets. Recommended lash is .014” to .016”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>IN.</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>F-234/332</td>
<td>259 .0200</td>
<td>146 .092 .059 .498</td>
<td>.531 .564 .584</td>
</tr>
<tr>
<td>F-236/3355</td>
<td>261 .0200</td>
<td>148 .096 .062 .503</td>
<td>.537 .570 .590</td>
</tr>
<tr>
<td>F-238/339</td>
<td>263 .0200</td>
<td>150 .099 .066 .509</td>
<td>.542 .576 .597</td>
</tr>
<tr>
<td>F-240/3425</td>
<td>265 .0200</td>
<td>152 .103 .069 .514</td>
<td>.548 .582 .603</td>
</tr>
<tr>
<td>F-242/346</td>
<td>267 .0200</td>
<td>154 .106 .072 .519</td>
<td>.554 .588 .609</td>
</tr>
<tr>
<td>F-244/3495</td>
<td>269 .0200</td>
<td>156 .110 .075 .524</td>
<td>.559 .594 .615</td>
</tr>
<tr>
<td>F-246/353</td>
<td>271 .0200</td>
<td>158 .113 .079 .529</td>
<td>.565 .600 .621</td>
</tr>
<tr>
<td>F-248/3565</td>
<td>273 .0200</td>
<td>160 .117 .082 .535</td>
<td>.570 .606 .627</td>
</tr>
<tr>
<td>F-250/3601</td>
<td>275 .0200</td>
<td>162 .120 .085 .540</td>
<td>.576 .612 .634</td>
</tr>
<tr>
<td>F-252/3635</td>
<td>277 .0200</td>
<td>164 .124 .089 .545</td>
<td>.582 .618 .640</td>
</tr>
<tr>
<td>F-254/367</td>
<td>279 .0200</td>
<td>166 .127 .092 .550</td>
<td>.587 .624 .646</td>
</tr>
<tr>
<td>F-256/370</td>
<td>281 .0200</td>
<td>168 .129 .094 .555</td>
<td>.592 .629 .651</td>
</tr>
<tr>
<td>F-258/374</td>
<td>283 .0200</td>
<td>170 .134 .099 .561</td>
<td>.598 .636 .658</td>
</tr>
<tr>
<td>F-260/3775</td>
<td>285 .0200</td>
<td>172 .138 .103 .566</td>
<td>.604 .642 .664</td>
</tr>
<tr>
<td>F-262/381</td>
<td>287 .0200</td>
<td>174 .141 .106 .572</td>
<td>.610 .648 .670</td>
</tr>
<tr>
<td>F-264/3845</td>
<td>289 .0200</td>
<td>176 .145 .110 .577</td>
<td>.615 .654 .677</td>
</tr>
<tr>
<td>F-266/388</td>
<td>291 .0200</td>
<td>178 .147 .112 .582</td>
<td>.621 .660 .683</td>
</tr>
<tr>
<td>F-268/3915</td>
<td>293 .0200</td>
<td>180 .152 .117 .587</td>
<td>.626 .666 .689</td>
</tr>
<tr>
<td>F-270/395</td>
<td>295 .0200</td>
<td>182 .155 .120 .593</td>
<td>.632 .672 .695</td>
</tr>
<tr>
<td>F-274/402</td>
<td>299 .0200</td>
<td>186 .161 .129 .603</td>
<td>.643 .683 .708</td>
</tr>
</tbody>
</table>

FIT842 mechanical series created for racing mechanical flat tappet. Designed to make full use of .842” diameter tappets. High ratio rocker arms advised. Recommended lash is .020” to .022”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>IN.</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>F-254/372</td>
<td>283 .0200</td>
<td>166 .120 .092 .558</td>
<td>.595 .632 .655</td>
</tr>
<tr>
<td>F-256/3401</td>
<td>285 .0020</td>
<td>164 .122 .094 .510</td>
<td>.544 .578 .599</td>
</tr>
<tr>
<td>F-258/379</td>
<td>287 .0020</td>
<td>170 .127 .098 .569</td>
<td>.606 .644 .667</td>
</tr>
<tr>
<td>F-260/3401</td>
<td>289 .0020</td>
<td>167 .130 .101 .510</td>
<td>.544 .578 .599</td>
</tr>
<tr>
<td>F-262/350</td>
<td>290 .0020</td>
<td>164 .122 .097 .525</td>
<td>.560 .595 .616</td>
</tr>
<tr>
<td>F-266/3552</td>
<td>301 .0020</td>
<td>168 .129 .103 .533</td>
<td>.568 .604 .625</td>
</tr>
</tbody>
</table>

FC18 mechanical series created for racing mechanical flat tappet. Designed to make full use of .842” diameter tappets, using 1.8 rocker arm ratios. Recommended lash is .020” to .022”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>1.50</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td>IN.</td>
<td>1.60</td>
<td></td>
</tr>
<tr>
<td>F-238/310</td>
<td>270 .0200</td>
<td>141 .091 .062 .558</td>
<td>.595 .632 .655</td>
</tr>
<tr>
<td>F-248/310</td>
<td>280 .0200</td>
<td>148 .107 .076 .558</td>
<td>.595 .632 .655</td>
</tr>
<tr>
<td>F-250/325</td>
<td>282 .0200</td>
<td>154 .110 .079 .585</td>
<td>.604 .642 .664</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
</tbody>
</table>

FC18

Continued from previous page.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-254/330</td>
<td>286</td>
<td>.0200</td>
<td>158</td>
<td>.117</td>
<td>.084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>F-262/340</td>
<td>294</td>
<td>.0200</td>
<td>166</td>
<td>.131</td>
<td>.097</td>
<td>.594</td>
<td>.842</td>
<td></td>
<td></td>
<td>.612</td>
</tr>
</tbody>
</table>

F4 mechanical series created for NASCAR® racing applications. This series has an excellent racing history. Designed to make full use of .875” diameter tappets. Recommended lash is .018”.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-262/3851</td>
<td>298</td>
<td>.0200</td>
<td>174</td>
<td>.137</td>
<td>.101</td>
<td>.578</td>
<td>.616</td>
<td>.655</td>
<td>.678</td>
<td>.875</td>
</tr>
<tr>
<td>F-264/388</td>
<td>300</td>
<td>.0200</td>
<td>176</td>
<td>.141</td>
<td>.105</td>
<td>.582</td>
<td>.621</td>
<td>.660</td>
<td>.683</td>
<td>.875</td>
</tr>
<tr>
<td>F-266/391</td>
<td>302</td>
<td>.0200</td>
<td>178</td>
<td>.144</td>
<td>.108</td>
<td>.587</td>
<td>.626</td>
<td>.665</td>
<td>.688</td>
<td>.875</td>
</tr>
<tr>
<td>F-268/394</td>
<td>304</td>
<td>.0200</td>
<td>180</td>
<td>.149</td>
<td>.112</td>
<td>.591</td>
<td>.630</td>
<td>.670</td>
<td>.693</td>
<td>.875</td>
</tr>
<tr>
<td>F-270/397</td>
<td>306</td>
<td>.0200</td>
<td>182</td>
<td>.152</td>
<td>.115</td>
<td>.596</td>
<td>.635</td>
<td>.675</td>
<td>.699</td>
<td>.875</td>
</tr>
<tr>
<td>F-272/400</td>
<td>308</td>
<td>.0200</td>
<td>184</td>
<td>.156</td>
<td>.118</td>
<td>.600</td>
<td>.640</td>
<td>.680</td>
<td>.704</td>
<td>.875</td>
</tr>
<tr>
<td>F-274/403</td>
<td>310</td>
<td>.0200</td>
<td>186</td>
<td>.159</td>
<td>.122</td>
<td>.605</td>
<td>.645</td>
<td>.685</td>
<td>.709</td>
<td>.875</td>
</tr>
<tr>
<td>F-276/406</td>
<td>312</td>
<td>.0200</td>
<td>188</td>
<td>.163</td>
<td>.126</td>
<td>.609</td>
<td>.650</td>
<td>.690</td>
<td>.715</td>
<td>.875</td>
</tr>
<tr>
<td>F-278/409</td>
<td>314</td>
<td>.0200</td>
<td>190</td>
<td>.167</td>
<td>.130</td>
<td>.614</td>
<td>.654</td>
<td>.695</td>
<td>.720</td>
<td>.875</td>
</tr>
<tr>
<td>F-280/4125</td>
<td>316</td>
<td>.0200</td>
<td>192</td>
<td>.171</td>
<td>.133</td>
<td>.619</td>
<td>.660</td>
<td>.701</td>
<td>.726</td>
<td>.875</td>
</tr>
<tr>
<td>F-284/4125</td>
<td>320</td>
<td>.0200</td>
<td>196</td>
<td>.179</td>
<td>.141</td>
<td>.619</td>
<td>.660</td>
<td>.701</td>
<td>.726</td>
<td>.875</td>
</tr>
<tr>
<td>F-286/4125</td>
<td>322</td>
<td>.0200</td>
<td>198</td>
<td>.182</td>
<td>.144</td>
<td>.619</td>
<td>.660</td>
<td>.701</td>
<td>.726</td>
<td>.875</td>
</tr>
</tbody>
</table>

F5 mechanical series created for NASCAR® racing applications. Designed to make full use of .875” diameter tappets. Recommended lash is .018”.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-246/370</td>
<td>278</td>
<td>.0200</td>
<td>158</td>
<td>.109</td>
<td>.076</td>
<td>.555</td>
<td>.592</td>
<td>.629</td>
<td>.651</td>
<td>.875</td>
</tr>
<tr>
<td>F-250/376</td>
<td>282</td>
<td>.0200</td>
<td>162</td>
<td>.116</td>
<td>.082</td>
<td>.564</td>
<td>.602</td>
<td>.639</td>
<td>.662</td>
<td>.875</td>
</tr>
<tr>
<td>F-254/382</td>
<td>286</td>
<td>.0200</td>
<td>166</td>
<td>.123</td>
<td>.088</td>
<td>.573</td>
<td>.611</td>
<td>.649</td>
<td>.672</td>
<td>.875</td>
</tr>
<tr>
<td>F-258/388</td>
<td>290</td>
<td>.0200</td>
<td>170</td>
<td>.130</td>
<td>.095</td>
<td>.582</td>
<td>.621</td>
<td>.660</td>
<td>.683</td>
<td>.875</td>
</tr>
<tr>
<td>F-260/391</td>
<td>292</td>
<td>.0200</td>
<td>172</td>
<td>.134</td>
<td>.098</td>
<td>.587</td>
<td>.626</td>
<td>.665</td>
<td>.688</td>
<td>.875</td>
</tr>
<tr>
<td>F-262/394</td>
<td>294</td>
<td>.0200</td>
<td>174</td>
<td>.137</td>
<td>.102</td>
<td>.591</td>
<td>.630</td>
<td>.670</td>
<td>.693</td>
<td>.875</td>
</tr>
<tr>
<td>F-264/397</td>
<td>296</td>
<td>.0200</td>
<td>176</td>
<td>.141</td>
<td>.105</td>
<td>.596</td>
<td>.635</td>
<td>.675</td>
<td>.699</td>
<td>.875</td>
</tr>
<tr>
<td>F-266/400</td>
<td>298</td>
<td>.0200</td>
<td>178</td>
<td>.145</td>
<td>.109</td>
<td>.600</td>
<td>.640</td>
<td>.680</td>
<td>.704</td>
<td>.875</td>
</tr>
<tr>
<td>F-268/403</td>
<td>300</td>
<td>.0200</td>
<td>180</td>
<td>.148</td>
<td>.112</td>
<td>.605</td>
<td>.645</td>
<td>.685</td>
<td>.709</td>
<td>.875</td>
</tr>
<tr>
<td>F-270/406</td>
<td>302</td>
<td>.0200</td>
<td>182</td>
<td>.152</td>
<td>.116</td>
<td>.609</td>
<td>.650</td>
<td>.690</td>
<td>.715</td>
<td>.875</td>
</tr>
<tr>
<td>F-272/409</td>
<td>304</td>
<td>.0200</td>
<td>184</td>
<td>.156</td>
<td>.119</td>
<td>.614</td>
<td>.654</td>
<td>.695</td>
<td>.720</td>
<td>.875</td>
</tr>
<tr>
<td>F-274/412</td>
<td>306</td>
<td>.0200</td>
<td>186</td>
<td>.159</td>
<td>.123</td>
<td>.618</td>
<td>.659</td>
<td>.700</td>
<td>.725</td>
<td>.875</td>
</tr>
<tr>
<td>F-276/415</td>
<td>308</td>
<td>.0200</td>
<td>188</td>
<td>.163</td>
<td>.126</td>
<td>.623</td>
<td>.664</td>
<td>.706</td>
<td>.730</td>
<td>.875</td>
</tr>
<tr>
<td>F-278/4181</td>
<td>310</td>
<td>.0200</td>
<td>190</td>
<td>.167</td>
<td>.130</td>
<td>.627</td>
<td>.669</td>
<td>.711</td>
<td>.736</td>
<td>.875</td>
</tr>
<tr>
<td>F-280/421</td>
<td>312</td>
<td>.0200</td>
<td>192</td>
<td>.170</td>
<td>.134</td>
<td>.632</td>
<td>.674</td>
<td>.716</td>
<td>.741</td>
<td>.875</td>
</tr>
<tr>
<td>F-286/430</td>
<td>318</td>
<td>.0200</td>
<td>198</td>
<td>.181</td>
<td>.145</td>
<td>.645</td>
<td>.688</td>
<td>.731</td>
<td>.757</td>
<td>.875</td>
</tr>
</tbody>
</table>

TLF2 mechanical series created for NASCAR® racing applications. Designed to make full use of .875” diameter tappets. Recommended lash is .012”.

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-258/3642</td>
<td>294</td>
<td>.0160</td>
<td>170</td>
<td>.133</td>
<td>.094</td>
<td>.546</td>
<td>.583</td>
<td>.619</td>
<td>.641</td>
<td>.875</td>
</tr>
<tr>
<td>F-260/3821</td>
<td>296</td>
<td>.0160</td>
<td>172</td>
<td>.136</td>
<td>.098</td>
<td>.573</td>
<td>.611</td>
<td>.650</td>
<td>.672</td>
<td>.875</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>TLF2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-262/3642</td>
<td>298</td>
<td>.0160</td>
<td>174</td>
<td>.140</td>
<td>.101</td>
</tr>
<tr>
<td>F-264/3881</td>
<td>300</td>
<td>.0160</td>
<td>176</td>
<td>.144</td>
<td>.104</td>
</tr>
<tr>
<td>F-266/3911</td>
<td>302</td>
<td>.0160</td>
<td>178</td>
<td>.147</td>
<td>.108</td>
</tr>
<tr>
<td>F-268/3700</td>
<td>304</td>
<td>.0160</td>
<td>180</td>
<td>.151</td>
<td>.111</td>
</tr>
<tr>
<td>F-268/3941</td>
<td>304</td>
<td>.0160</td>
<td>180</td>
<td>.151</td>
<td>.111</td>
</tr>
<tr>
<td>F-270/3700</td>
<td>306</td>
<td>.0160</td>
<td>182</td>
<td>.155</td>
<td>.114</td>
</tr>
<tr>
<td>F-270/3975</td>
<td>306</td>
<td>.0160</td>
<td>182</td>
<td>.155</td>
<td>.114</td>
</tr>
<tr>
<td>F-272/4001</td>
<td>308</td>
<td>.0160</td>
<td>183</td>
<td>.158</td>
<td>.118</td>
</tr>
<tr>
<td>F-274/4032</td>
<td>310</td>
<td>.0160</td>
<td>186</td>
<td>.162</td>
<td>.122</td>
</tr>
<tr>
<td>F-276/4063</td>
<td>312</td>
<td>.0160</td>
<td>188</td>
<td>.166</td>
<td>.125</td>
</tr>
<tr>
<td>F-278/4063</td>
<td>314</td>
<td>.0160</td>
<td>190</td>
<td>.170</td>
<td>.129</td>
</tr>
<tr>
<td>F-280/4063</td>
<td>316</td>
<td>.0160</td>
<td>192</td>
<td>.173</td>
<td>.132</td>
</tr>
<tr>
<td>F-282/4063</td>
<td>318</td>
<td>.0160</td>
<td>194</td>
<td>.177</td>
<td>.136</td>
</tr>
<tr>
<td>F-284/4188</td>
<td>320</td>
<td>.0160</td>
<td>196</td>
<td>.181</td>
<td>.140</td>
</tr>
<tr>
<td>F-286/4063</td>
<td>322</td>
<td>.0160</td>
<td>198</td>
<td>.184</td>
<td>.143</td>
</tr>
<tr>
<td>F-288/4250</td>
<td>324</td>
<td>.0160</td>
<td>200</td>
<td>.188</td>
<td>.147</td>
</tr>
</tbody>
</table>

F6 mechanical series is designed for unrestricted NASCAR® engines with 50 mm cam journals, using 1.8 rocker arm ratios. Recommended lash is .020” intake and .022” exhaust.

<table>
<thead>
<tr>
<th>F6</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-270/376</td>
<td>304</td>
<td>.0200</td>
<td>176</td>
<td>.142</td>
<td>.108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-274/384</td>
<td>308</td>
<td>.0200</td>
<td>180</td>
<td>.150</td>
<td>.115</td>
<td></td>
<td>1.67</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-278/392</td>
<td>312</td>
<td>.0200</td>
<td>184</td>
<td>.157</td>
<td>.121</td>
<td></td>
<td>1.69</td>
<td>.875</td>
<td></td>
</tr>
</tbody>
</table>

F7 mechanical series is designed for unrestricted NASCAR® engines with 50 mm cam journals, using 1.9 rocker arm ratios. Recommended lash is .020” intake and .022” exhaust.

<table>
<thead>
<tr>
<th>F7</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F-259/353</td>
<td>294</td>
<td>.0200</td>
<td>164</td>
<td>.120</td>
<td>.090</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-263/359</td>
<td>298</td>
<td>.0200</td>
<td>168</td>
<td>.127</td>
<td>.096</td>
<td></td>
<td>1.67</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-265/362</td>
<td>300</td>
<td>.0200</td>
<td>170</td>
<td>.130</td>
<td>.099</td>
<td></td>
<td>1.68</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-267/365</td>
<td>302</td>
<td>.0200</td>
<td>172</td>
<td>.134</td>
<td>.102</td>
<td></td>
<td>1.69</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-269/368</td>
<td>304</td>
<td>.0200</td>
<td>174</td>
<td>.137</td>
<td>.105</td>
<td></td>
<td>1.69</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-271/371</td>
<td>306</td>
<td>.0200</td>
<td>176</td>
<td>.141</td>
<td>.108</td>
<td></td>
<td>1.70</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-273/374</td>
<td>308</td>
<td>.0200</td>
<td>178</td>
<td>.145</td>
<td>.111</td>
<td></td>
<td>1.71</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-275/377</td>
<td>310</td>
<td>.0200</td>
<td>180</td>
<td>.149</td>
<td>.115</td>
<td></td>
<td>1.71</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-277/380</td>
<td>312</td>
<td>.0200</td>
<td>182</td>
<td>.152</td>
<td>.118</td>
<td></td>
<td>1.72</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-279/383</td>
<td>314</td>
<td>.0200</td>
<td>184</td>
<td>.156</td>
<td>.121</td>
<td></td>
<td>1.72</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-281/386</td>
<td>316</td>
<td>.0200</td>
<td>186</td>
<td>.160</td>
<td>.125</td>
<td></td>
<td>1.73</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-283/389</td>
<td>318</td>
<td>.0200</td>
<td>188</td>
<td>.163</td>
<td>.128</td>
<td></td>
<td>1.74</td>
<td>.875</td>
<td></td>
</tr>
<tr>
<td>F-285/392</td>
<td>320</td>
<td>.0200</td>
<td>190</td>
<td>.167</td>
<td>.131</td>
<td></td>
<td>1.75</td>
<td>.875</td>
<td></td>
</tr>
</tbody>
</table>
MECHANICAL FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050"/LOBE LIFT</th>
<th>104 DEG. INTAKE</th>
<th>114 DEG. EXHAUST</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td>F10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-270/392</td>
<td>302</td>
<td>.0200</td>
<td>177</td>
<td>.145</td>
<td>.110</td>
<td>.706 .875</td>
</tr>
<tr>
<td>F-272/3981</td>
<td>304</td>
<td>.0200</td>
<td>180</td>
<td>.149</td>
<td>.113</td>
<td>.717 .875</td>
</tr>
<tr>
<td>F-274/404</td>
<td>306</td>
<td>.0200</td>
<td>183</td>
<td>.153</td>
<td>.117</td>
<td>.727 .875</td>
</tr>
<tr>
<td>F-276/4103</td>
<td>308</td>
<td>.0200</td>
<td>185</td>
<td>.157</td>
<td>.120</td>
<td>.739 .875</td>
</tr>
<tr>
<td>F-278/4101</td>
<td>311</td>
<td>.0200</td>
<td>185</td>
<td>.158</td>
<td>.121</td>
<td>.738 .875</td>
</tr>
<tr>
<td>F-280/4102</td>
<td>314</td>
<td>.0200</td>
<td>185</td>
<td>.158</td>
<td>.122</td>
<td>.738 .875</td>
</tr>
<tr>
<td>F-286/428</td>
<td>319</td>
<td>.0020</td>
<td>194</td>
<td>.173</td>
<td>.136</td>
<td>.770 .875</td>
</tr>
<tr>
<td>F-288/432</td>
<td>321</td>
<td>.0020</td>
<td>195</td>
<td>.177</td>
<td>.139</td>
<td>.778 .875</td>
</tr>
</tbody>
</table>

FN55						
F-270/4061	320	.0020	178	.146	.110	.772 .792 .875
F-274/415	306	.0020	183	.154	.117	.789 .809 .875
F-278/428	311	.0020	186	.158	.121	.813 .835 .875
F-280/428	313	.0020	187	.162	.125	.813 .835 .875
F-284/4281	317	.0020	194	.169	.132	.813 .835 .875

F8						
F-232/330	264	.0200	140	.082	.055	.660 .875
F-238/336	270	.0200	146	.091	.062	.672 .875
F-242/340	274	.0200	150	.098	.068	.680 .875
F-246/344	278	.0200	154	.104	.073	.688 .875
F-258/356	290	.0200	166	.125	.091	.712 .875

F9						
F-234/310	266	.0200	138	.080	.060	.558 .875
F-240/348	272	.0200	148	.094	.065	.626 .875
F-244/354	276	.0200	152	.100	.070	.637 .875
F-248/3601	280	.0200	157	.107	.076	.648 .875
F-252/366	284	.0200	161	.114	.081	.659 .875
F-264/384	296	.0200	173	.135	.100	.691 .875
MECHANICAL FLAT TAPPET PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. Intake</td>
<td>114 DEG. Exhaust</td>
<td>1.50</td>
</tr>
<tr>
<td>F11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-228/3334</td>
<td>264</td>
<td>.0200</td>
<td>140</td>
<td>.078</td>
<td>.050</td>
</tr>
<tr>
<td>F-238/3467</td>
<td>274</td>
<td>.0200</td>
<td>148</td>
<td>.093</td>
<td>.063</td>
</tr>
<tr>
<td>F-248/3600</td>
<td>284</td>
<td>.0200</td>
<td>158</td>
<td>.110</td>
<td>.077</td>
</tr>
<tr>
<td>F904</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-255/370</td>
<td>296</td>
<td>.0200</td>
<td>163</td>
<td>.115</td>
<td>.083</td>
</tr>
<tr>
<td>F-265/385</td>
<td>306</td>
<td>.0200</td>
<td>173</td>
<td>.135</td>
<td>.101</td>
</tr>
<tr>
<td>F-275/400</td>
<td>316</td>
<td>.0200</td>
<td>183</td>
<td>.155</td>
<td>.119</td>
</tr>
<tr>
<td>F-285/410</td>
<td>326</td>
<td>.0200</td>
<td>193</td>
<td>.173</td>
<td>.137</td>
</tr>
<tr>
<td>F-295/410</td>
<td>336</td>
<td>.0200</td>
<td>203</td>
<td>.191</td>
<td>.154</td>
</tr>
<tr>
<td>F-305/410</td>
<td>346</td>
<td>.0200</td>
<td>212</td>
<td>.208</td>
<td>.172</td>
</tr>
<tr>
<td>F904A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-258/3734</td>
<td>294</td>
<td>.0200</td>
<td>168</td>
<td>.127</td>
<td>.093</td>
</tr>
<tr>
<td>F-278/4000</td>
<td>316</td>
<td>.0200</td>
<td>185</td>
<td>.158</td>
<td>.121</td>
</tr>
<tr>
<td>F-288/4133</td>
<td>326</td>
<td>.0200</td>
<td>195</td>
<td>.176</td>
<td>.140</td>
</tr>
<tr>
<td>F-298/414</td>
<td>330</td>
<td>.0200</td>
<td>204</td>
<td>.194</td>
<td>.156</td>
</tr>
<tr>
<td>NOPOP1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-292/398</td>
<td>332</td>
<td>.0162</td>
<td>200</td>
<td>.184</td>
<td>.150</td>
</tr>
<tr>
<td>F-298/414</td>
<td>338</td>
<td>.0162</td>
<td>206</td>
<td>.194</td>
<td>.161</td>
</tr>
<tr>
<td>F-304/414</td>
<td>344</td>
<td>.0162</td>
<td>212</td>
<td>.206</td>
<td>.172</td>
</tr>
</tbody>
</table>

F11 mechanical series created for Chrysler and AMC engines using .904" diameter tappets for street and mid-range torque applications. Recommended lash is .028" to .030".

F904 mechanical series created for Chrysler and AMC engines using .904" diameter tappets with stable valve motion for conservative performance and endurance racing applications. Recommended lash is .022" intake and .026" exhaust.

F904A mechanical series created for Chrysler and AMC engines using .904" diameter tappets with stable valve motion for racing applications.

F12 mechanical series created for Chrysler and AMC engines using .904" diameter tappets for racing applications. Recommended lash is .026".

NOPOP1 mechanical series originally created for Chrysler Hemi fuel drag race applications. Recommended lash is .028".
MECHANICAL ROLLER PROFILES

SR Street Roller series created for late model engines running mechanical rollers requiring quiet valve train operation, due to monitoring by knock sensors. Recommended lash is .020".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-212/314</td>
<td>262</td>
<td>.0150</td>
<td>123</td>
<td>.055 .034 .471 .502 .534 .553 B</td>
<td></td>
</tr>
<tr>
<td>SR-220/326</td>
<td>270</td>
<td>.0150</td>
<td>132</td>
<td>.066 .041 .489 .522 .554 .574 B</td>
<td></td>
</tr>
<tr>
<td>SR-228/338</td>
<td>278</td>
<td>.0150</td>
<td>140</td>
<td>.077 .050 .507 .541 .575 .595 B</td>
<td></td>
</tr>
<tr>
<td>SR-236/350</td>
<td>286</td>
<td>.0150</td>
<td>149</td>
<td>.090 .060 .525 .560 .595 .616 B</td>
<td></td>
</tr>
<tr>
<td>SR-240/356</td>
<td>290</td>
<td>.0150</td>
<td>153</td>
<td>.097 .065 .534 .570 .605 .627 B</td>
<td></td>
</tr>
<tr>
<td>SR-244/362</td>
<td>294</td>
<td>.0150</td>
<td>157</td>
<td>.104 .071 .543 .579 .615 .637 B</td>
<td></td>
</tr>
<tr>
<td>SR-248/368</td>
<td>298</td>
<td>.0150</td>
<td>162</td>
<td>.111 .078 .552 .589 .626 .648 B</td>
<td></td>
</tr>
<tr>
<td>SR-250/374</td>
<td>300</td>
<td>.0150</td>
<td>164</td>
<td>.115 .081 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-252/374</td>
<td>302</td>
<td>.0150</td>
<td>166</td>
<td>.118 .084 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-254/374</td>
<td>304</td>
<td>.0150</td>
<td>168</td>
<td>.122 .087 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-256/374</td>
<td>306</td>
<td>.0150</td>
<td>169</td>
<td>.126 .090 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-260/374</td>
<td>310</td>
<td>.0150</td>
<td>172</td>
<td>.133 .097 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-262/374</td>
<td>312</td>
<td>.0150</td>
<td>174</td>
<td>.136 .100 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-264/374</td>
<td>314</td>
<td>.0150</td>
<td>176</td>
<td>.140 .104 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-268/374</td>
<td>318</td>
<td>.0150</td>
<td>179</td>
<td>.147 .111 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-270/374</td>
<td>320</td>
<td>.0150</td>
<td>182</td>
<td>.150 .114 .561 .598 .636 .658 B</td>
<td></td>
</tr>
<tr>
<td>SR-274/374</td>
<td>324</td>
<td>.0150</td>
<td>185</td>
<td>.157 .121 .561 .598 .636 .658 B</td>
<td></td>
</tr>
</tbody>
</table>

SR400 Street Roller .400" lift series for mechanical rollers in serious street and marine performance applications. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR-236/400</td>
<td>274</td>
<td>.0200</td>
<td>157</td>
<td>.089 .060 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-240/400</td>
<td>278</td>
<td>.0200</td>
<td>159</td>
<td>.096 .066 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-244/400</td>
<td>282</td>
<td>.0200</td>
<td>163</td>
<td>.103 .070 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-248/400</td>
<td>286</td>
<td>.0200</td>
<td>167</td>
<td>.111 .076 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-252/400</td>
<td>290</td>
<td>.0200</td>
<td>170</td>
<td>.119 .082 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-256/400</td>
<td>294</td>
<td>.0200</td>
<td>174</td>
<td>.127 .089 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-258/400</td>
<td>296</td>
<td>.0200</td>
<td>176</td>
<td>.131 .093 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-260/400</td>
<td>298</td>
<td>.0200</td>
<td>178</td>
<td>.135 .097 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>SR-264/400</td>
<td>302</td>
<td>.0200</td>
<td>182</td>
<td>.143 .104 .600 .640 .680 .704 B</td>
<td></td>
</tr>
</tbody>
</table>

CDS Cam Dynamics roller series created for oval track and endurance racing applications. Gentle valve motion with a proven history. Recommended lash is .030".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-250/395</td>
<td>287</td>
<td>.0200</td>
<td>164</td>
<td>.112 .079 .593 .632 .672 .467 B</td>
<td></td>
</tr>
<tr>
<td>R-252/395</td>
<td>289</td>
<td>.0200</td>
<td>167</td>
<td>.117 .082 .593 .632 .672 .467 C</td>
<td></td>
</tr>
<tr>
<td>R-255/395</td>
<td>292</td>
<td>.0200</td>
<td>169</td>
<td>.121 .087 .593 .632 .672 .467 B</td>
<td></td>
</tr>
<tr>
<td>R-257/395</td>
<td>294</td>
<td>.0200</td>
<td>172</td>
<td>.126 .090 .593 .632 .672 .467 B</td>
<td></td>
</tr>
<tr>
<td>R-260/395</td>
<td>297</td>
<td>.0200</td>
<td>173</td>
<td>.132 .094 .593 .632 .672 .467 C</td>
<td></td>
</tr>
<tr>
<td>R-265/395</td>
<td>302</td>
<td>.0200</td>
<td>178</td>
<td>.140 .103 .593 .632 .672 .467 B</td>
<td></td>
</tr>
<tr>
<td>R-270/400</td>
<td>307</td>
<td>.0200</td>
<td>181</td>
<td>.148 .112 .600 .640 .680 .704 B</td>
<td></td>
</tr>
<tr>
<td>R-275/3987</td>
<td>315</td>
<td>.0200</td>
<td>182</td>
<td>.152 .116 .598 .638 .678 .702 B</td>
<td></td>
</tr>
<tr>
<td>R-280/400</td>
<td>320</td>
<td>.0200</td>
<td>188</td>
<td>.161 .125 .600 .640 .680 .704 B</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

CDS

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT .050"</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>R-285/4194</td>
<td>325</td>
<td>.0200</td>
<td>194</td>
<td>.172</td>
<td>.134</td>
</tr>
<tr>
<td>R-290/4200</td>
<td>330</td>
<td>.0200</td>
<td>200</td>
<td>.178</td>
<td>.143</td>
</tr>
</tbody>
</table>

TR

Track Roller series created for oval track and endurance racing applications with a proven history. A benchmark from which other cams are measured. Recommended lash is .022".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT .050"</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>TR-242/3867</td>
<td>282</td>
<td>.0195</td>
<td>158</td>
<td>.094</td>
<td>.071</td>
</tr>
<tr>
<td>TR-250/400</td>
<td>290</td>
<td>.0195</td>
<td>166</td>
<td>.110</td>
<td>.082</td>
</tr>
<tr>
<td>TR-252/4036</td>
<td>286</td>
<td>.0200</td>
<td>171</td>
<td>.117</td>
<td>.089</td>
</tr>
<tr>
<td>TR-256/4167</td>
<td>296</td>
<td>.0195</td>
<td>171</td>
<td>.123</td>
<td>0.093</td>
</tr>
<tr>
<td>TR-260/4167</td>
<td>300</td>
<td>.0195</td>
<td>175</td>
<td>.129</td>
<td>.099</td>
</tr>
<tr>
<td>TR-260/4200</td>
<td>294</td>
<td>.0200</td>
<td>179</td>
<td>.134</td>
<td>.104</td>
</tr>
<tr>
<td>TR-262/4036</td>
<td>296</td>
<td>0.0200</td>
<td>181</td>
<td>.137</td>
<td>.107</td>
</tr>
<tr>
<td>TR-266/4167</td>
<td>306</td>
<td>.0195</td>
<td>181</td>
<td>.141</td>
<td>.108</td>
</tr>
<tr>
<td>TR-270/4167</td>
<td>310</td>
<td>.0195</td>
<td>185</td>
<td>.152</td>
<td>0.116</td>
</tr>
<tr>
<td>TR-270/4200</td>
<td>304</td>
<td>.0020</td>
<td>189</td>
<td>.155</td>
<td>.120</td>
</tr>
<tr>
<td>TR-274/410</td>
<td>314</td>
<td>.0195</td>
<td>186</td>
<td>.156</td>
<td>.117</td>
</tr>
<tr>
<td>TR-276/4167</td>
<td>316</td>
<td>.0195</td>
<td>191</td>
<td>.162</td>
<td>.126</td>
</tr>
<tr>
<td>TR-276/4200</td>
<td>310</td>
<td>.0200</td>
<td>195</td>
<td>.170</td>
<td>.132</td>
</tr>
<tr>
<td>TR-280/4167</td>
<td>320</td>
<td>.0195</td>
<td>194</td>
<td>.166</td>
<td>.134</td>
</tr>
<tr>
<td>TR-282/4200</td>
<td>316</td>
<td>.0200</td>
<td>200</td>
<td>.183</td>
<td>.144</td>
</tr>
<tr>
<td>TR-286/4167</td>
<td>326</td>
<td>.0195</td>
<td>200</td>
<td>.179</td>
<td>.142</td>
</tr>
</tbody>
</table>

395 Roller series created for oval track and endurance racing applications with 55 mm journals, usually with 1.6, and up to 2.0, rocker arm ratios. Easy on valve springs. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT .050"</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>R-252/3951</td>
<td>284</td>
<td>.0200</td>
<td>169</td>
<td>.117</td>
<td>.088</td>
</tr>
<tr>
<td>R-256/395</td>
<td>288</td>
<td>.0200</td>
<td>173</td>
<td>.125</td>
<td>.094</td>
</tr>
<tr>
<td>R-262/395</td>
<td>296</td>
<td>.0200</td>
<td>174</td>
<td>.129</td>
<td>.100</td>
</tr>
<tr>
<td>R-264/395</td>
<td>298</td>
<td>.0200</td>
<td>175</td>
<td>.132</td>
<td>.103</td>
</tr>
<tr>
<td>R-268/395</td>
<td>302</td>
<td>.0200</td>
<td>178</td>
<td>.138</td>
<td>.109</td>
</tr>
</tbody>
</table>

400 Roller series created for oval track and endurance racing applications with 2.036" journals, usually with 1.6 or higher rocker arm ratios. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT .050"</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>R-240/400</td>
<td>272</td>
<td>.0200</td>
<td>159</td>
<td>.092</td>
<td>.072</td>
</tr>
<tr>
<td>R-244/400</td>
<td>276</td>
<td>.0200</td>
<td>163</td>
<td>.099</td>
<td>.078</td>
</tr>
<tr>
<td>R-248/400</td>
<td>280</td>
<td>.0200</td>
<td>166</td>
<td>.107</td>
<td>.084</td>
</tr>
<tr>
<td>R-252/400</td>
<td>284</td>
<td>.0200</td>
<td>170</td>
<td>.138</td>
<td>.109</td>
</tr>
</tbody>
</table>

405 Roller series created for oval track and endurance racing applications with 55 mm journals, usually with 1.6 or higher rocker arm ratios. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT .050"</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
</tr>
<tr>
<td>R-258/4051</td>
<td>290</td>
<td>.0200</td>
<td>177</td>
<td>.131</td>
<td>.099</td>
</tr>
<tr>
<td>R-264/4051</td>
<td>296</td>
<td>.0200</td>
<td>182</td>
<td>.142</td>
<td>.112</td>
</tr>
<tr>
<td>R-266/405</td>
<td>298</td>
<td>.0200</td>
<td>184</td>
<td>.148</td>
<td>.116</td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES

415 roller series created for oval track and endurance racing applications with 50 mm journals. Recommended lash is .020” intake and .024” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-266/415</td>
<td>300 .0200</td>
<td>180 .138 .108</td>
<td>.623 .664 .707 .730</td>
<td>.745 .771</td>
<td>C</td>
</tr>
<tr>
<td>R-270/415</td>
<td>304 .0200</td>
<td>183 .144 .114</td>
<td>.623 .664 .707 .730</td>
<td>.745 .771</td>
<td>C</td>
</tr>
</tbody>
</table>

420 roller series created for oval track racing applications including sprint cars, and endurance applications, up to 8,200 RPM. Proven performance and reliability. Recommended lash is .020”, allowing for a tight cold setting on aluminum engines.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-244/420</td>
<td>276 .0200</td>
<td>166 .105 .070</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-246/420</td>
<td>278 .0200</td>
<td>169 .109 .073</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-248/420</td>
<td>280 .0200</td>
<td>169 .113 .081</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>A B</td>
</tr>
<tr>
<td>R-252/420</td>
<td>284 .0200</td>
<td>173 .121 .087</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>A B</td>
</tr>
<tr>
<td>R-256/420</td>
<td>288 .0200</td>
<td>176 .129 .094</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>A B</td>
</tr>
<tr>
<td>R-258/420</td>
<td>290 .0200</td>
<td>178 .133 .098</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-260/420</td>
<td>292 .0200</td>
<td>180 .137 .101</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-262/420</td>
<td>294 .0200</td>
<td>182 .141 .105</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B G</td>
</tr>
<tr>
<td>R-264/420</td>
<td>296 .0200</td>
<td>183 .145 .109</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>A B G</td>
</tr>
<tr>
<td>R-266/420</td>
<td>298 .0200</td>
<td>185 .150 .113</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-268/420</td>
<td>300 .0200</td>
<td>187 .154 .116</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-270/420</td>
<td>302 .0200</td>
<td>189 .158 .120</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-272/420</td>
<td>304 .0200</td>
<td>191 .162 .124</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>A B</td>
</tr>
<tr>
<td>R-274/420</td>
<td>306 .0200</td>
<td>193 .166 .128</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-276/420</td>
<td>308 .0200</td>
<td>195 .170 .132</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-278/420</td>
<td>310 .0200</td>
<td>196 .174 .136</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-280/420</td>
<td>312 .0200</td>
<td>198 .178 .140</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-282/420</td>
<td>314 .0200</td>
<td>200 .182 .145</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-284/420</td>
<td>316 .0200</td>
<td>202 .186 .147</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-286/420</td>
<td>318 .0200</td>
<td>202 .190 .149</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
<tr>
<td>R-290/420</td>
<td>322 .0200</td>
<td>203 .198 .154</td>
<td>.630 .672 .714 .745</td>
<td>.771 .799</td>
<td>B</td>
</tr>
</tbody>
</table>

438 roller series created as a step up from the 420 series with improved high-RPM dynamics. Recommended lash is .016” intake and .018” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-236/438</td>
<td>266 .0200</td>
<td>160 .094 .061</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-240/438</td>
<td>270 .0200</td>
<td>164 .102 .067</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-246/438</td>
<td>276 .0200</td>
<td>169 .113 .076</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-250/438</td>
<td>280 .0200</td>
<td>173 .121 .083</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-258/438</td>
<td>290 .0200</td>
<td>178 .129 .098</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-262/438</td>
<td>294 .0200</td>
<td>181 .137 .105</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-264/438</td>
<td>296 .0200</td>
<td>183 .141 .110</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-268/438</td>
<td>300 .0200</td>
<td>187 .150 .117</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
<tr>
<td>R-272/438</td>
<td>304 .0200</td>
<td>191 .163 .121</td>
<td>.657 .701 .745 .771</td>
<td>.799 B</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

438

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-276/438</td>
<td>308 .0200 194 .164 .134 .657 .701 .745 .771 .771</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-286/438</td>
<td>318 .0200 204 .191 .149 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4381

Roller series created as a step up from the 420 series with improved high-speed dynamics. Very stable, especially with small BCD lobes. Stable to 9000 RPM with a 1.75 rocker ratio, 9500 RPM with a 1.7 rocker ratio with a properly set-up stable, lightweight valve train. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-248/4381</td>
<td>280 .0200 168 .107 .084 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-250/4381</td>
<td>282 .0200 170 .111 .087 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-252/4381</td>
<td>284 .0200 172 .115 .090 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-254/4381</td>
<td>286 .0200 174 .119 .094 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/4381</td>
<td>288 .0200 176 .123 .097 .657 .701 .745 .771 .771</td>
<td>B C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/4381</td>
<td>290 .0200 178 .127 .101 .657 .701 .745 .771 .771</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-260/4381</td>
<td>292 .0200 180 .131 .104 .657 .701 .745 .771 .771</td>
<td>B C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-262/4381</td>
<td>292 .0200 181 .135 .108 .657 .701 .745 .771 .771</td>
<td>B F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-264/4381</td>
<td>296 .0200 183 .139 .111 .657 .701 .745 .771 .771</td>
<td>B C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-266/4381</td>
<td>298 .0200 185 .144 .115 .657 .701 .745 .771 .771</td>
<td>B C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-268/4381</td>
<td>300 .0200 187 .147 .119 .657 .701 .745 .771 .771</td>
<td>B C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-270/4381</td>
<td>302 .0200 189 .152 .123 .657 .701 .745 .771 .771</td>
<td>B C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-272/4381</td>
<td>304 .0200 190 .156 .126 .657 .701 .745 .771 .771</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-274/4381</td>
<td>306 .0200 192 .160 .130 .657 .701 .745 .771 .771</td>
<td>C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-276/4381</td>
<td>308 .0200 194 .164 .134 .657 .701 .745 .771 .771</td>
<td>B C D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-278/4381</td>
<td>310 .0200 196 .169 .137 .657 .701 .745 .771 .771</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-280/4381</td>
<td>312 .0200 198 .172 .142 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-282/4381</td>
<td>314 .0200 200 .177 .146 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-284/4381</td>
<td>316 .0200 201 .180 .149 .657 .701 .745 .771 .771</td>
<td>B F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-286/4381</td>
<td>318 .0200 203 .184 .153 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-288/4381</td>
<td>320 .0200 205 .188 .157 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-290/4381</td>
<td>322 .0200 207 .192 .161 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-292/4381</td>
<td>324 .0200 208 .196 .165 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-296/4381</td>
<td>328 .0200 212 .203 .172 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-298/4381</td>
<td>330 .0200 214 .207 .176 .657 .701 .745 .771 .771</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LH Low Harmonic roller series minimizes valve spring excitation in the RPM range of maximum engine output. Results of testing have shown an increase of valve spring life in circle track, marine, and bracket racing applications. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-250/406</td>
<td>282 .0200 166 .111 .081 .609 .650 .690 .715 .715</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-252/410</td>
<td>284 .0200 168 .115 .084 .615 .656 .697 .722 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/418</td>
<td>288 .0200 173 .123 .091 .627 .669 .711 .736 D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/422</td>
<td>290 .0200 175 .127 .094 .633 .675 .717 .743 C D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG.</td>
<td>114 DEG.</td>
<td>.150</td>
</tr>
<tr>
<td>LH Low Harmonic roller series minimizes valve spring excitation in the RPM range of maximum engine output. Results of testing have shown an increase of valve spring life in circle track, marine, and bracket racing applications. Recommended lash is .020" intake and .022" exhaust.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-260/426</td>
<td>292</td>
<td>.0200</td>
<td>177</td>
<td>.131</td>
<td>.097</td>
</tr>
<tr>
<td>R-262/430</td>
<td>294</td>
<td>.0200</td>
<td>179</td>
<td>.135</td>
<td>.100</td>
</tr>
<tr>
<td>R-264/434</td>
<td>296</td>
<td>.0200</td>
<td>181</td>
<td>.139</td>
<td>.103</td>
</tr>
<tr>
<td>R-266/438</td>
<td>298</td>
<td>.0200</td>
<td>183</td>
<td>.143</td>
<td>.107</td>
</tr>
<tr>
<td>R-268/442</td>
<td>300</td>
<td>.0200</td>
<td>185</td>
<td>.147</td>
<td>.111</td>
</tr>
<tr>
<td>R-268/5201</td>
<td>298</td>
<td>.0200</td>
<td>187</td>
<td>.151</td>
<td>.111</td>
</tr>
<tr>
<td>R-270/446</td>
<td>302</td>
<td>.0200</td>
<td>187</td>
<td>.151</td>
<td>.114</td>
</tr>
<tr>
<td>R-272/450</td>
<td>304</td>
<td>.0200</td>
<td>189</td>
<td>.156</td>
<td>.118</td>
</tr>
<tr>
<td>R-272/5152</td>
<td>302</td>
<td>.0200</td>
<td>191</td>
<td>.161</td>
<td>.119</td>
</tr>
<tr>
<td>R-274/454</td>
<td>306</td>
<td>.0200</td>
<td>191</td>
<td>.160</td>
<td>.122</td>
</tr>
<tr>
<td>R-274/525</td>
<td>304</td>
<td>.0200</td>
<td>193</td>
<td>.165</td>
<td>.123</td>
</tr>
<tr>
<td>R-276/458</td>
<td>308</td>
<td>.0200</td>
<td>193</td>
<td>.164</td>
<td>.125</td>
</tr>
<tr>
<td>R-276/5152</td>
<td>306</td>
<td>.0200</td>
<td>195</td>
<td>.170</td>
<td>.127</td>
</tr>
<tr>
<td>R-276/5202</td>
<td>305</td>
<td>.0200</td>
<td>197</td>
<td>.173</td>
<td>.133</td>
</tr>
<tr>
<td>R-276/540</td>
<td>305</td>
<td>.0200</td>
<td>198</td>
<td>.176</td>
<td>.131</td>
</tr>
<tr>
<td>R-278/462</td>
<td>310</td>
<td>.0200</td>
<td>195</td>
<td>.169</td>
<td>.129</td>
</tr>
<tr>
<td>R-278/5201</td>
<td>308</td>
<td>.0200</td>
<td>197</td>
<td>.173</td>
<td>.130</td>
</tr>
<tr>
<td>R-280/466</td>
<td>312</td>
<td>.0200</td>
<td>197</td>
<td>.173</td>
<td>.133</td>
</tr>
<tr>
<td>R-280/5201</td>
<td>310</td>
<td>.0200</td>
<td>199</td>
<td>.178</td>
<td>.134</td>
</tr>
<tr>
<td>R-284/474</td>
<td>316</td>
<td>.0200</td>
<td>201</td>
<td>.183</td>
<td>.141</td>
</tr>
<tr>
<td>R-286/478</td>
<td>318</td>
<td>.0200</td>
<td>203</td>
<td>.188</td>
<td>.145</td>
</tr>
<tr>
<td>R-286/5201</td>
<td>316</td>
<td>.0200</td>
<td>205</td>
<td>.192</td>
<td>.147</td>
</tr>
<tr>
<td>R-286/540</td>
<td>314</td>
<td>.0200</td>
<td>211</td>
<td>.208</td>
<td>.157</td>
</tr>
<tr>
<td>R-288/472</td>
<td>320</td>
<td>.0200</td>
<td>205</td>
<td>.192</td>
<td>.149</td>
</tr>
<tr>
<td>R-288/5201</td>
<td>317</td>
<td>.0200</td>
<td>210</td>
<td>.204</td>
<td>.156</td>
</tr>
<tr>
<td>R-290/486</td>
<td>322</td>
<td>.0200</td>
<td>207</td>
<td>.197</td>
<td>.153</td>
</tr>
<tr>
<td>R-302/520</td>
<td>334</td>
<td>.0200</td>
<td>216</td>
<td>.218</td>
<td>.173</td>
</tr>
<tr>
<td>R-302/5202</td>
<td>332</td>
<td>.0200</td>
<td>221</td>
<td>.231</td>
<td>.182</td>
</tr>
<tr>
<td>R-304/5201</td>
<td>334</td>
<td>.0200</td>
<td>223</td>
<td>.236</td>
<td>.187</td>
</tr>
<tr>
<td>R-308/5201</td>
<td>338</td>
<td>.0200</td>
<td>227</td>
<td>.246</td>
<td>.197</td>
</tr>
<tr>
<td>R-310/5201</td>
<td>340</td>
<td>.0200</td>
<td>229</td>
<td>.250</td>
<td>.201</td>
</tr>
<tr>
<td>R-312/5201</td>
<td>342</td>
<td>.0200</td>
<td>231</td>
<td>.254</td>
<td>.206</td>
</tr>
<tr>
<td>R-316/5201</td>
<td>346</td>
<td>.0200</td>
<td>235</td>
<td>.263</td>
<td>.216</td>
</tr>
<tr>
<td>R-318/5151</td>
<td>350</td>
<td>.0200</td>
<td>231</td>
<td>.254</td>
<td>.208</td>
</tr>
<tr>
<td>R-318/525</td>
<td>348</td>
<td>.0200</td>
<td>237</td>
<td>.267</td>
<td>.221</td>
</tr>
<tr>
<td>R-320/5152</td>
<td>350</td>
<td>.0200</td>
<td>238</td>
<td>.268</td>
<td>.224</td>
</tr>
<tr>
<td>R-320/525</td>
<td>350</td>
<td>.0200</td>
<td>239</td>
<td>.271</td>
<td>.225</td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE DUR. AT .050"/LOBE LIFT</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH2 284/142</td>
<td>284 .0200 177 .131 .096 .633 .675 .717 .743 A</td>
<td>284 .0200 181 .149 .111 .648 .691 .734 .760 C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 288/142</td>
<td>288 .0200 184 .167 .130 .672 .717 .762 .788 C D F</td>
<td>288 .0200 187 .171 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 290/142</td>
<td>290 .0200 187 .171 .130 .672 .717 .762 .788 C D F</td>
<td>290 .0200 190 .176 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 292/142</td>
<td>292 .0200 190 .176 .130 .672 .717 .762 .788 C D F</td>
<td>292 .0200 193 .180 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 294/142</td>
<td>294 .0200 193 .180 .130 .672 .717 .762 .788 C D F</td>
<td>294 .0200 196 .184 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 296/142</td>
<td>296 .0200 196 .184 .130 .672 .717 .762 .788 C D F</td>
<td>296 .0200 199 .188 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 298/142</td>
<td>298 .0200 199 .192 .130 .672 .717 .762 .788 C D F</td>
<td>298 .0200 202 .196 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 300/142</td>
<td>300 .0200 202 .196 .130 .672 .717 .762 .788 C D F</td>
<td>300 .0200 205 .200 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 302/142</td>
<td>302 .0200 205 .200 .130 .672 .717 .762 .788 C D F</td>
<td>302 .0200 208 .204 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 304/142</td>
<td>304 .0200 208 .204 .130 .672 .717 .762 .788 C D F</td>
<td>304 .0200 211 .208 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 306/142</td>
<td>306 .0200 211 .208 .130 .672 .717 .762 .788 C D F</td>
<td>306 .0200 214 .212 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 308/142</td>
<td>308 .0200 214 .212 .130 .672 .717 .762 .788 C D F</td>
<td>308 .0200 217 .216 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 310/142</td>
<td>310 .0200 217 .216 .130 .672 .717 .762 .788 C D F</td>
<td>310 .0200 220 .220 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LH2 312/142</td>
<td>312 .0200 220 .220 .130 .672 .717 .762 .788 C D F</td>
<td>312 .0200 223 .224 .130 .672 .717 .762 .788 C D F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MECHANICAL ROLLER PROFILES

LH2 Low Harmonic roller series minimizes valve spring excitation in the RPM range of maximum engine output. Higher RPM potential than the original LH. Recommended lash is .020” intake and .022” exhaust.

422 roller series is used primarily as an intake lobe with high rocker arm ratios. The lobes are sized on a .950 base circle diameter. Recommended lash is .012”.

428 roller, aggressive series for up to 1.8:1 rocker ratio. Popular oval track series. Recommended lash is .020” intake and .022” exhaust.

430 roller, aggressive high RPM series created for oval track racing applications including sprint cars. Can be used with 1.85 ratio rockers with 55 mm journals and stiff valve train. Basic RPM potential about 500 less than comparable 4381 series grinds. Recommended lash is .020” intake and .022” exhaust.
MECHANICAL ROLLER PROFILES

430

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-262/4302</td>
</tr>
<tr>
<td>R-262/4303</td>
</tr>
<tr>
<td>R-262/4521</td>
</tr>
<tr>
<td>R-263/4301</td>
</tr>
<tr>
<td>R-263/4302</td>
</tr>
<tr>
<td>R-264/4302</td>
</tr>
<tr>
<td>R-264/4303</td>
</tr>
<tr>
<td>R-266/4302</td>
</tr>
<tr>
<td>R-266/4303</td>
</tr>
<tr>
<td>R-266/4302</td>
</tr>
<tr>
<td>R-266/4781</td>
</tr>
<tr>
<td>R-268/4302</td>
</tr>
<tr>
<td>R-268/4301</td>
</tr>
<tr>
<td>R-268/4302</td>
</tr>
<tr>
<td>R-268/4301</td>
</tr>
<tr>
<td>R-270/4301</td>
</tr>
<tr>
<td>R-272/4301</td>
</tr>
</tbody>
</table>

452

452 roller, aggressive series for up to 1.8:1 rocker ratio. Recommended lash is .020” intake and .022” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-252/452</td>
</tr>
<tr>
<td>R-254/452</td>
</tr>
<tr>
<td>R-256/452</td>
</tr>
<tr>
<td>R-258/452</td>
</tr>
<tr>
<td>R-260/452</td>
</tr>
<tr>
<td>R-262/452</td>
</tr>
<tr>
<td>R-264/452</td>
</tr>
<tr>
<td>R-266/452</td>
</tr>
<tr>
<td>R-268/452</td>
</tr>
<tr>
<td>R-270/452</td>
</tr>
<tr>
<td>R-272/452</td>
</tr>
<tr>
<td>R-274/452</td>
</tr>
<tr>
<td>R-276/452</td>
</tr>
<tr>
<td>R-278/452</td>
</tr>
<tr>
<td>R-280/452</td>
</tr>
<tr>
<td>R-282/452</td>
</tr>
<tr>
<td>R-284/452</td>
</tr>
<tr>
<td>R-286/452</td>
</tr>
</tbody>
</table>

4467

4467 roller series created for oval track and drag racing that gives a .700”+ net valve lift when used with a 1.6:1 or greater rocker ratio. Recommended lash is .012”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-252/4467</td>
</tr>
<tr>
<td>R-254/4467</td>
</tr>
<tr>
<td>R-256/4467</td>
</tr>
<tr>
<td>R-258/4467</td>
</tr>
<tr>
<td>R-260/4467</td>
</tr>
<tr>
<td>R-262/4467</td>
</tr>
<tr>
<td>R-264/4467</td>
</tr>
<tr>
<td>R-266/4467</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

4467

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-264/4467</td>
<td>296 .0202 187 .152 .112 .670 .715 .759 .786</td>
<td>B C F G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-266/4467</td>
<td>298 .0202 189 .156 .115 .670 .715 .759 .786</td>
<td>B C F G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-268/4467</td>
<td>300 .0202 191 .161 .120 .670 .715 .759 .786</td>
<td>B C F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-270/4467</td>
<td>302 .0202 193 .165 .124 .670 .715 .759 .786</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-272/4467</td>
<td>304 .0202 195 .170 .128 .670 .715 .759 .786</td>
<td>B F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-274/4467</td>
<td>306 .0202 197 .174 .132 .670 .715 .759 .786</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-276/4467</td>
<td>308 .0202 198 .178 .136 .670 .715 .759 .786</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-278/4467</td>
<td>310 .0202 200 .183 .140 .670 .715 .759 .786</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-280/4467</td>
<td>312 .0202 202 .187 .144 .670 .715 .759 .786</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-282/4467</td>
<td>314 .0202 204 .191 .149 .670 .715 .759 .786</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-284/4467</td>
<td>316 .0202 206 .195 .153 .670 .715 .759 .786</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-292/4467</td>
<td>324 .0202 214 .212 .170 .670 .715 .759 .786</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4541

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-262/4541</td>
<td>293 .0200 182 .136 .108 .681 .727 .772 .799</td>
<td>F G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-264/4541</td>
<td>295 .0200 184 .140 .111 .681 .727 .772 .799</td>
<td>C G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-264/4542</td>
<td>297 .0200 183 .140 .108 .681 .727 .772 .799</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-264/4543</td>
<td>296 .0200 184 .146 .107 .681 .727 .772 .800</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-266/4541</td>
<td>297 .0200 185 .143 .115 .681 .727 .772 .799</td>
<td>B F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-268/4541</td>
<td>299 .0200 187 .147 .118 .681 .727 .772 .799</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-270/4542</td>
<td>303 .0200 188 .151 .118 .681 .727 .772 .799</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-272/4542</td>
<td>303 .0200 190 .158 .124 .681 .727 .772 .799</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-274/4541</td>
<td>305 .0200 196 .172 .128 .681 .727 .772 .799</td>
<td>B C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-278/4541</td>
<td>309 .0200 199 .181 .136 .681 .727 .772 .799</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-282/4541</td>
<td>313 .0200 203 .189 .145 .681 .727 .772 .799</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-284/4541</td>
<td>315 .0200 205 .193 .149 .681 .727 .772 .799</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-294/4541</td>
<td>328 .0200 205 .188 .159 .681 .727 .772 .799</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-304/4541</td>
<td>339 .0200 212 .203 .174 .681 .727 .772 .799</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

471

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-252/471</td>
<td>284 .0200 177 .122 .090 .707 .754 .801 .829</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/471</td>
<td>288 .0200 180 .130 .098 .707 .754 .801 .829</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-264/471</td>
<td>296 .0200 186 .145 .112 .707 .754 .801 .829</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-268/471</td>
<td>300 .0200 188 .150 .117 .707 .754 .801 .829</td>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>R-286/471</td>
<td>318</td>
<td>.0200</td>
<td>.183</td>
<td>.145</td>
<td>.707</td>
</tr>
<tr>
<td>R-294/471</td>
<td>328</td>
<td>.0200</td>
<td>.194</td>
<td>.160</td>
<td>.707</td>
</tr>
<tr>
<td>4168 IR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-248/410</td>
<td>284</td>
<td>.0160</td>
<td>169</td>
<td>.114</td>
<td>.082</td>
</tr>
<tr>
<td>IR-252/4134</td>
<td>288</td>
<td>.0160</td>
<td>173</td>
<td>.122</td>
<td>.088</td>
</tr>
<tr>
<td>IR-256/4168</td>
<td>292</td>
<td>.0160</td>
<td>176</td>
<td>.131</td>
<td>.094</td>
</tr>
<tr>
<td>IR-260/4168</td>
<td>296</td>
<td>.0160</td>
<td>180</td>
<td>.139</td>
<td>.101</td>
</tr>
<tr>
<td>IR-264/4168</td>
<td>300</td>
<td>.0160</td>
<td>184</td>
<td>.148</td>
<td>.108</td>
</tr>
<tr>
<td>IR-268/4168</td>
<td>304</td>
<td>.0160</td>
<td>188</td>
<td>.157</td>
<td>.116</td>
</tr>
<tr>
<td>IR-272/4168</td>
<td>308</td>
<td>.0160</td>
<td>191</td>
<td>.165</td>
<td>.123</td>
</tr>
<tr>
<td>IR-276/4168</td>
<td>312</td>
<td>.0160</td>
<td>195</td>
<td>.173</td>
<td>.131</td>
</tr>
<tr>
<td>IR-280/4168</td>
<td>316</td>
<td>.0160</td>
<td>199</td>
<td>.181</td>
<td>.139</td>
</tr>
<tr>
<td>4334 IR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IR-254/4334</td>
<td>278</td>
<td>.0245</td>
<td>179</td>
<td>.133</td>
<td>.093</td>
</tr>
<tr>
<td>IR-258/4334</td>
<td>282</td>
<td>.0245</td>
<td>182</td>
<td>.142</td>
<td>.100</td>
</tr>
<tr>
<td>IR-262/4334</td>
<td>286</td>
<td>.0245</td>
<td>186</td>
<td>.150</td>
<td>.107</td>
</tr>
<tr>
<td>IR-266/4334</td>
<td>290</td>
<td>.0245</td>
<td>190</td>
<td>.160</td>
<td>.115</td>
</tr>
<tr>
<td>IR-270/4334</td>
<td>294</td>
<td>.0245</td>
<td>193</td>
<td>.168</td>
<td>.122</td>
</tr>
<tr>
<td>IR-274/4334</td>
<td>298</td>
<td>.0245</td>
<td>197</td>
<td>.176</td>
<td>.130</td>
</tr>
<tr>
<td>IR-278/4334</td>
<td>292</td>
<td>.0245</td>
<td>201</td>
<td>.185</td>
<td>.139</td>
</tr>
<tr>
<td>422</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-262/422</td>
<td>290</td>
<td>.0200</td>
<td>183</td>
<td>.143</td>
<td>.106</td>
</tr>
<tr>
<td>R-266/422</td>
<td>294</td>
<td>.0200</td>
<td>186</td>
<td>.151</td>
<td>.121</td>
</tr>
<tr>
<td>4403</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-260/4403</td>
<td>290</td>
<td>.0200</td>
<td>182</td>
<td>.140</td>
<td>.102</td>
</tr>
<tr>
<td>R-262/4403</td>
<td>292</td>
<td>.0200</td>
<td>184</td>
<td>.144</td>
<td>.105</td>
</tr>
<tr>
<td>R-264/4403</td>
<td>294</td>
<td>.0200</td>
<td>186</td>
<td>.148</td>
<td>.109</td>
</tr>
<tr>
<td>R-266/4403</td>
<td>296</td>
<td>.0200</td>
<td>188</td>
<td>.153</td>
<td>.113</td>
</tr>
<tr>
<td>R-268/4403</td>
<td>298</td>
<td>.0200</td>
<td>190</td>
<td>.157</td>
<td>.117</td>
</tr>
<tr>
<td>R-270/4403</td>
<td>300</td>
<td>.0200</td>
<td>192</td>
<td>.161</td>
<td>.121</td>
</tr>
</tbody>
</table>

4168 IR roller series created for oval track applications with aggressive inverted flank areas for small block Chevrolet size lobes. Recommended lash is .012". Not recommended for high RPM applications.

4334 IR roller series created from the Cam Dynamics series of masters for oval track applications with aggressive inverted flank areas. Recommended lash is .012". Not recommended for high RPM applications.

422 roller series created for oval track and drag racing that gives a .650"+ net valve lift when used with a 1.6:1 or higher rocker ratio. Sized on a .950" diameter base circle for Buick and long stroke (small base circle) Chevrolet with a .012" recommended lash.

4403 roller series created as a step up from the 420 series with improved high-speed dynamics, popular oval track intake lobes. Use with up to a 1.8 rocker ratio. Recommended lash is .020" intake and .022" exhaust, allowing for a tight cold setting on aluminum engines.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
</tbody>
</table>

4440 roller series created for oval track and drag racing that gives a .700”+ net valve lift when used with a 1.6:1 or higher rocker ratio. Sized on a .900” diameter base circle for Buick and long stroke (small base circle) Chevrolet. Recommended lash is .012”.

<table>
<thead>
<tr>
<th>4440</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-258/4440</td>
<td>286</td>
<td>.0220</td>
<td>181</td>
<td>.138</td>
<td>.099</td>
</tr>
<tr>
<td>R-262/4440</td>
<td>290</td>
<td>.0220</td>
<td>185</td>
<td>.146</td>
<td>.107</td>
</tr>
<tr>
<td>R-266/4440</td>
<td>294</td>
<td>.0220</td>
<td>189</td>
<td>.155</td>
<td>.115</td>
</tr>
<tr>
<td>R-270/4440</td>
<td>298</td>
<td>.0220</td>
<td>192</td>
<td>.164</td>
<td>.123</td>
</tr>
<tr>
<td>R-274/4440</td>
<td>302</td>
<td>.0220</td>
<td>196</td>
<td>.173</td>
<td>.131</td>
</tr>
<tr>
<td>R-278/4440</td>
<td>306</td>
<td>.0220</td>
<td>200</td>
<td>.181</td>
<td>.139</td>
</tr>
<tr>
<td>R-282/4440</td>
<td>310</td>
<td>.0220</td>
<td>204</td>
<td>.190</td>
<td>.148</td>
</tr>
</tbody>
</table>

4188 IR roller series created for oval track, marine, and drag racing applications with aggressive inverted flank areas for the big block Chevrolet and similar engines. Use with limited RPM applications. Recommended lash is .012”.

<table>
<thead>
<tr>
<th>4188 IR</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-252/4188</td>
<td>290</td>
<td>.0140</td>
<td>174</td>
<td>.125</td>
<td>.088</td>
</tr>
<tr>
<td>IR-262/4188</td>
<td>300</td>
<td>.0140</td>
<td>183</td>
<td>.147</td>
<td>.105</td>
</tr>
<tr>
<td>IR-272/4188</td>
<td>310</td>
<td>.0140</td>
<td>193</td>
<td>.169</td>
<td>.124</td>
</tr>
<tr>
<td>IR-278/4188</td>
<td>316</td>
<td>.0140</td>
<td>198</td>
<td>.181</td>
<td>.135</td>
</tr>
<tr>
<td>IR-286/4188</td>
<td>324</td>
<td>.0140</td>
<td>205</td>
<td>.196</td>
<td>.152</td>
</tr>
</tbody>
</table>

IR roller series created for Super Stock drag racing where aggressive lobes are used with limited RPM. Recommended lash is .012”.

<table>
<thead>
<tr>
<th>IR</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>IR-272/4714</td>
<td>310</td>
<td>.0140</td>
<td>195</td>
<td>.168</td>
<td>.128</td>
</tr>
<tr>
<td>IR-276/4714</td>
<td>314</td>
<td>.0140</td>
<td>199</td>
<td>.177</td>
<td>.136</td>
</tr>
<tr>
<td>IR-280/4778</td>
<td>318</td>
<td>.0140</td>
<td>203</td>
<td>.186</td>
<td>.145</td>
</tr>
<tr>
<td>IR-284/500</td>
<td>322</td>
<td>.0140</td>
<td>208</td>
<td>.197</td>
<td>.154</td>
</tr>
<tr>
<td>IR-288/500</td>
<td>326</td>
<td>.0140</td>
<td>211</td>
<td>.205</td>
<td>.163</td>
</tr>
<tr>
<td>IR-292/500</td>
<td>330</td>
<td>.0140</td>
<td>215</td>
<td>.213</td>
<td>.172</td>
</tr>
</tbody>
</table>

R1 roller series created for oval track and marine for the big block Chevrolet and other higher rocker ratio engines, where stable high RPM valve motion is required. Recommended lash is .026”.

<table>
<thead>
<tr>
<th>R1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-236/3177</td>
<td>272</td>
<td>.0200</td>
<td>139</td>
<td>.082</td>
<td>.064</td>
</tr>
<tr>
<td>R-246/3294</td>
<td>282</td>
<td>.0200</td>
<td>150</td>
<td>.098</td>
<td>.077</td>
</tr>
<tr>
<td>R-256/3412</td>
<td>292</td>
<td>.0200</td>
<td>159</td>
<td>.114</td>
<td>.092</td>
</tr>
<tr>
<td>R-266/3528</td>
<td>302</td>
<td>.0200</td>
<td>166</td>
<td>.126</td>
<td>.107</td>
</tr>
<tr>
<td>R-276/3648</td>
<td>312</td>
<td>.0200</td>
<td>179</td>
<td>.147</td>
<td>.123</td>
</tr>
<tr>
<td>R-286/3765</td>
<td>322</td>
<td>.0200</td>
<td>189</td>
<td>.165</td>
<td>.130</td>
</tr>
<tr>
<td>R-296/394</td>
<td>332</td>
<td>.0200</td>
<td>201</td>
<td>.185</td>
<td>.156</td>
</tr>
</tbody>
</table>

R2 roller series created for drag racing applications for engines like the big block Chevrolet and Chrysler engines where stable high RPM valve motion is required. Recommended lash is .028”.

<table>
<thead>
<tr>
<th>R2</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R-280/4468</td>
<td>312</td>
<td>.0225</td>
<td>192</td>
<td>.168</td>
<td>.129</td>
</tr>
<tr>
<td>R-290/4468B</td>
<td>322</td>
<td>.0225</td>
<td>202</td>
<td>.188</td>
<td>.148</td>
</tr>
<tr>
<td>R-290/4618</td>
<td>322</td>
<td>.0225</td>
<td>202</td>
<td>.188</td>
<td>.148</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

R2

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>DEG.</th>
<th>IN.</th>
<th>104 DEG. INTAKE</th>
<th>114 DEG. EXHAUST</th>
<th>1.50</th>
<th>1.60</th>
<th>1.70</th>
<th>1.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-296/4778</td>
<td>328</td>
<td>.0225</td>
<td>209</td>
<td>.316</td>
<td>.717</td>
<td>.764</td>
<td>.812</td>
<td>.841</td>
</tr>
<tr>
<td>R-300/4778</td>
<td>332</td>
<td>.0225</td>
<td>213</td>
<td>.327</td>
<td>.717</td>
<td>.764</td>
<td>.812</td>
<td>.841</td>
</tr>
<tr>
<td>R-300/5098</td>
<td>332</td>
<td>.0225</td>
<td>215</td>
<td>.327</td>
<td>.765</td>
<td>.816</td>
<td>.867</td>
<td>.897</td>
</tr>
</tbody>
</table>

4706 roller series created for drag racing applications for engines like the big block Chevrolet and Chrysler engines, where stable exhaust valve motion is required. Recommended lash is .030”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>DEG.</th>
<th>IN.</th>
<th>104 DEG. INTAKE</th>
<th>114 DEG. EXHAUST</th>
<th>1.50</th>
<th>1.60</th>
<th>1.70</th>
<th>1.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-280/4706</td>
<td>320</td>
<td>.0198</td>
<td>192</td>
<td>.165</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-282/4706</td>
<td>322</td>
<td>.0198</td>
<td>194</td>
<td>.169</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-284/4706</td>
<td>324</td>
<td>.0198</td>
<td>196</td>
<td>.173</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-286/4706</td>
<td>326</td>
<td>.0198</td>
<td>198</td>
<td>.178</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-288/4706</td>
<td>328</td>
<td>.0198</td>
<td>200</td>
<td>.182</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-290/4706</td>
<td>330</td>
<td>.0198</td>
<td>202</td>
<td>.186</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-292/4706</td>
<td>332</td>
<td>.0198</td>
<td>204</td>
<td>.190</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-294/4706</td>
<td>334</td>
<td>.0198</td>
<td>206</td>
<td>.195</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-296/4706</td>
<td>336</td>
<td>.0198</td>
<td>208</td>
<td>.199</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-300/4706</td>
<td>340</td>
<td>.0198</td>
<td>212</td>
<td>.205</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-302/4706</td>
<td>342</td>
<td>.0198</td>
<td>214</td>
<td>.212</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-304/4706</td>
<td>344</td>
<td>.0198</td>
<td>217</td>
<td>.218</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-308/4706</td>
<td>348</td>
<td>.0198</td>
<td>219</td>
<td>.224</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-310/4706</td>
<td>350</td>
<td>.0198</td>
<td>221</td>
<td>.228</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-312/4706</td>
<td>352</td>
<td>.0198</td>
<td>223</td>
<td>.232</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-314/4706</td>
<td>354</td>
<td>.0198</td>
<td>225</td>
<td>.236</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-316/4706</td>
<td>356</td>
<td>.0198</td>
<td>227</td>
<td>.240</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-318/4706</td>
<td>358</td>
<td>.0198</td>
<td>229</td>
<td>.245</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-320/4706</td>
<td>360</td>
<td>.0198</td>
<td>231</td>
<td>.249</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-322/4706</td>
<td>362</td>
<td>.0198</td>
<td>233</td>
<td>.252</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
<tr>
<td>R-326/4706</td>
<td>366</td>
<td>.0198</td>
<td>237</td>
<td>.257</td>
<td>.706</td>
<td>.753</td>
<td>.800</td>
<td>.828</td>
</tr>
</tbody>
</table>

490 roller series created for drag racing applications for engines like the big block Chevrolet and Chrysler engines, where stable exhaust valve motion is required. Recommended lash is .026” intake and .030” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>DEG.</th>
<th>IN.</th>
<th>104 DEG. INTAKE</th>
<th>114 DEG. EXHAUST</th>
<th>1.50</th>
<th>1.60</th>
<th>1.70</th>
<th>1.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-292/490</td>
<td>328</td>
<td>.0200</td>
<td>210</td>
<td>.204</td>
<td>.735</td>
<td>.784</td>
<td>.833</td>
<td>.862</td>
</tr>
<tr>
<td>R-302/490</td>
<td>338</td>
<td>.0200</td>
<td>219</td>
<td>.224</td>
<td>.735</td>
<td>.784</td>
<td>.833</td>
<td>.862</td>
</tr>
<tr>
<td>R-306/490</td>
<td>342</td>
<td>.0200</td>
<td>223</td>
<td>.232</td>
<td>.735</td>
<td>.784</td>
<td>.833</td>
<td>.862</td>
</tr>
<tr>
<td>R-312/490</td>
<td>348</td>
<td>.0200</td>
<td>228</td>
<td>.244</td>
<td>.735</td>
<td>.784</td>
<td>.833</td>
<td>.862</td>
</tr>
</tbody>
</table>

NOPOP2 roller series created for various drag race applications where stable high RPM valve motion is required. Recommended lash is .026”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>DEG.</th>
<th>IN.</th>
<th>104 DEG. INTAKE</th>
<th>114 DEG. EXHAUST</th>
<th>1.50</th>
<th>1.60</th>
<th>1.70</th>
<th>1.76</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-264/4334</td>
<td>304</td>
<td>.0162</td>
<td>176</td>
<td>.132</td>
<td>.650</td>
<td>.693</td>
<td>.737</td>
<td>.763</td>
</tr>
<tr>
<td>R-268/4834</td>
<td>308</td>
<td>.0162</td>
<td>180</td>
<td>.139</td>
<td>.725</td>
<td>.773</td>
<td>.822</td>
<td>.851</td>
</tr>
<tr>
<td>R-274/4334</td>
<td>314</td>
<td>.0162</td>
<td>197</td>
<td>.176</td>
<td>.650</td>
<td>.693</td>
<td>.737</td>
<td>.763</td>
</tr>
<tr>
<td>R-278/413</td>
<td>318</td>
<td>.0162</td>
<td>187</td>
<td>.157</td>
<td>.620</td>
<td>.661</td>
<td>.702</td>
<td>.727</td>
</tr>
<tr>
<td>PROFILE CODE</td>
<td>ADVERTISED DUR. AT TAPPET LIFT</td>
<td>DUR. AT .500" TAPPET LIFT</td>
<td>TAPPET LIFT AT TOP DEAD CENTER</td>
<td>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</td>
<td>DESIGN LOBE SIZE CODE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
<td>1.60</td>
<td>1.70</td>
<td>1.76</td>
</tr>
<tr>
<td>NOPOP2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-280/450</td>
<td>320</td>
<td>.0162</td>
<td>191</td>
<td>.165</td>
<td>.125</td>
<td>.675</td>
<td>.720</td>
<td>.765</td>
</tr>
<tr>
<td>R-280/500</td>
<td>320</td>
<td>.0162</td>
<td>192</td>
<td>.165</td>
<td>.129</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-282/4701</td>
<td>322</td>
<td>.0162</td>
<td>194</td>
<td>.167</td>
<td>.135</td>
<td>.705</td>
<td>.752</td>
<td>.799</td>
</tr>
<tr>
<td>R-282/5001</td>
<td>322</td>
<td>.0162</td>
<td>195</td>
<td>.168</td>
<td>.136</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-284/427</td>
<td>324</td>
<td>.0162</td>
<td>194</td>
<td>.170</td>
<td>.136</td>
<td>.641</td>
<td>.683</td>
<td>.726</td>
</tr>
<tr>
<td>R-284/456</td>
<td>324</td>
<td>.0162</td>
<td>195</td>
<td>.171</td>
<td>.136</td>
<td>.684</td>
<td>.730</td>
<td>.775</td>
</tr>
<tr>
<td>R-284/5003</td>
<td>322</td>
<td>.0162</td>
<td>200</td>
<td>.172</td>
<td>.140</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-286/4588</td>
<td>326</td>
<td>.0162</td>
<td>198</td>
<td>.177</td>
<td>.147</td>
<td>.780</td>
<td>.832</td>
<td>.884</td>
</tr>
<tr>
<td>R-286/4668</td>
<td>326</td>
<td>.0162</td>
<td>197</td>
<td>.176</td>
<td>.139</td>
<td>.700</td>
<td>.747</td>
<td>.794</td>
</tr>
<tr>
<td>R-286/4701</td>
<td>326</td>
<td>.0162</td>
<td>198</td>
<td>.175</td>
<td>.142</td>
<td>.705</td>
<td>.752</td>
<td>.799</td>
</tr>
<tr>
<td>R-286/500</td>
<td>326</td>
<td>.0162</td>
<td>200</td>
<td>.182</td>
<td>.142</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-286/5203</td>
<td>324</td>
<td>.0162</td>
<td>203</td>
<td>.186</td>
<td>.147</td>
<td>.780</td>
<td>.832</td>
<td>.884</td>
</tr>
<tr>
<td>R-288/4254</td>
<td>328</td>
<td>.0162</td>
<td>198</td>
<td>.179</td>
<td>.144</td>
<td>.638</td>
<td>.681</td>
<td>.723</td>
</tr>
<tr>
<td>R-288/4588</td>
<td>328</td>
<td>.0162</td>
<td>200</td>
<td>.182</td>
<td>.144</td>
<td>.688</td>
<td>.734</td>
<td>.780</td>
</tr>
<tr>
<td>R-288/4714</td>
<td>328</td>
<td>.0162</td>
<td>199</td>
<td>.180</td>
<td>.144</td>
<td>.707</td>
<td>.754</td>
<td>.801</td>
</tr>
<tr>
<td>R-290/415</td>
<td>330</td>
<td>.0162</td>
<td>199</td>
<td>.182</td>
<td>.147</td>
<td>.623</td>
<td>.664</td>
<td>.706</td>
</tr>
<tr>
<td>R-290/4778</td>
<td>330</td>
<td>.0162</td>
<td>201</td>
<td>.184</td>
<td>.147</td>
<td>.717</td>
<td>.764</td>
<td>.812</td>
</tr>
<tr>
<td>R-290/480</td>
<td>330</td>
<td>.0162</td>
<td>201</td>
<td>.185</td>
<td>.147</td>
<td>.720</td>
<td>.768</td>
<td>.816</td>
</tr>
<tr>
<td>R-292/4254</td>
<td>332</td>
<td>.0162</td>
<td>202</td>
<td>.187</td>
<td>.151</td>
<td>.638</td>
<td>.681</td>
<td>.723</td>
</tr>
<tr>
<td>R-292/480</td>
<td>332</td>
<td>.0162</td>
<td>202</td>
<td>.187</td>
<td>.150</td>
<td>.720</td>
<td>.768</td>
<td>.816</td>
</tr>
<tr>
<td>R-292/500</td>
<td>332</td>
<td>.0162</td>
<td>203</td>
<td>.190</td>
<td>.150</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-294/440</td>
<td>334</td>
<td>.0162</td>
<td>204</td>
<td>.190</td>
<td>.154</td>
<td>.660</td>
<td>.704</td>
<td>.748</td>
</tr>
<tr>
<td>R-294/4778</td>
<td>334</td>
<td>.0162</td>
<td>205</td>
<td>.193</td>
<td>.154</td>
<td>.717</td>
<td>.764</td>
<td>.812</td>
</tr>
<tr>
<td>R-296/435</td>
<td>336</td>
<td>.0162</td>
<td>206</td>
<td>.195</td>
<td>.159</td>
<td>.653</td>
<td>.696</td>
<td>.740</td>
</tr>
<tr>
<td>R-296/500</td>
<td>336</td>
<td>.0162</td>
<td>207</td>
<td>.198</td>
<td>.159</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-296/515</td>
<td>336</td>
<td>.0162</td>
<td>209</td>
<td>.198</td>
<td>.163</td>
<td>.773</td>
<td>.824</td>
<td>.876</td>
</tr>
<tr>
<td>R-296/525</td>
<td>336</td>
<td>.0162</td>
<td>209</td>
<td>.198</td>
<td>.163</td>
<td>.788</td>
<td>.840</td>
<td>.893</td>
</tr>
<tr>
<td>R-300/500</td>
<td>340</td>
<td>.0162</td>
<td>212</td>
<td>.206</td>
<td>.169</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-300/515</td>
<td>340</td>
<td>.0162</td>
<td>313</td>
<td>.208</td>
<td>.170</td>
<td>.773</td>
<td>.824</td>
<td>.876</td>
</tr>
<tr>
<td>R-300/525</td>
<td>340</td>
<td>.0162</td>
<td>213</td>
<td>.207</td>
<td>.171</td>
<td>.788</td>
<td>.840</td>
<td>.893</td>
</tr>
<tr>
<td>R-302/467</td>
<td>342</td>
<td>.0162</td>
<td>212</td>
<td>.206</td>
<td>.169</td>
<td>.701</td>
<td>.747</td>
<td>.794</td>
</tr>
<tr>
<td>R-304/500</td>
<td>344</td>
<td>.0162</td>
<td>216</td>
<td>.216</td>
<td>.172</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-304/525</td>
<td>344</td>
<td>.0162</td>
<td>218</td>
<td>.218</td>
<td>.180</td>
<td>.788</td>
<td>.840</td>
<td>.893</td>
</tr>
<tr>
<td>R-306/500</td>
<td>346</td>
<td>.0162</td>
<td>218</td>
<td>.221</td>
<td>.181</td>
<td>.750</td>
<td>.800</td>
<td>.850</td>
</tr>
<tr>
<td>R-308/525</td>
<td>346</td>
<td>.0162</td>
<td>224</td>
<td>.237</td>
<td>.193</td>
<td>.788</td>
<td>.840</td>
<td>.892</td>
</tr>
<tr>
<td>R-310/467</td>
<td>350</td>
<td>.0162</td>
<td>220</td>
<td>.223</td>
<td>.185</td>
<td>.701</td>
<td>.747</td>
<td>.794</td>
</tr>
<tr>
<td>R-312/525</td>
<td>350</td>
<td>.0162</td>
<td>228</td>
<td>.246</td>
<td>.201</td>
<td>.788</td>
<td>.840</td>
<td>.893</td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-268/481</td>
<td>312 .0120 184 .147 .109 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-272/481</td>
<td>316 .0120 188 .156 .116 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-274/481</td>
<td>318 .0120 190 .160 .120 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-276/481</td>
<td>320 .0120 192 .164 .124 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-280/481</td>
<td>324 .0120 196 .173 .131 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-282/481</td>
<td>326 .0120 198 .177 .135 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-284/481</td>
<td>328 .0120 200 .181 .139 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-286/481</td>
<td>330 .0120 201 .185 .143 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-288/481</td>
<td>332 .0120 203 .189 .147 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-290/481</td>
<td>334 .0120 205 .194 .151 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-292/481</td>
<td>336 .0120 207 .198 .155 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-296/481</td>
<td>340 .0120 211 .207 .164 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-296/502</td>
<td>340 .0120 212 .209 .164 .688 .734 .780 .808 F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-298/481</td>
<td>342 .0120 213 .211 .168 .722 .770 .818 .847 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-302/530</td>
<td>346 .0120 218 .224 .177 .795 .848 .901 .933 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-304/481</td>
<td>348 .0120 219 .225 .181 .795 .848 .901 .933 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-304/502</td>
<td>348 .0120 220 .227 .181 .753 .803 .853 .884 F G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-304/530</td>
<td>348 .0120 220 .227 .181 .795 .848 .901 .933 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-306/481</td>
<td>350 .0120 221 .229 .185 .795 .848 .901 .933 C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-306/502</td>
<td>350 .0120 222 .231 .186 .753 .803 .853 .884 F G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-308/502</td>
<td>352 .0120 224 .235 .190 .753 .803 .853 .884 F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-308/530</td>
<td>352 .0120 224 .238 .191 .795 .848 .901 .933 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-310/5301</td>
<td>354 .0120 226 .243 .196 .795 .848 .901 .933 G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

481 roller series
create for high RPM large cubic inch drag race engines. Recommended lash is .016”.

4765 roller series
Symmetrical design created for high RPM drag race applications from the Cam Dynamics series of masters. Primarily used as an intake lobe with a recommended lash of .030” to .035”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-278/4765</td>
<td>312 .0240 190 .161 .121 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-280/4765</td>
<td>314 .0240 192 .164 .125 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-282/4765</td>
<td>316 .0240 194 .169 .129 .715 .762 .810 .839 B G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-284/4765</td>
<td>318 .0240 196 .173 .132 .715 .762 .810 .839 B G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-286/4765</td>
<td>320 .0240 197 .177 .136 .715 .762 .810 .839 B C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-290/4765</td>
<td>324 .0240 201 .185 .144 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-294/4765</td>
<td>328 .0240 205 .194 .152 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-302/4765</td>
<td>336 .0240 212 .208 .166 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-304/4765</td>
<td>338 .0240 215 .214 .172 .715 .762 .810 .839 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

4589 roller series
Symmetrical design created for high RPM drag race applications from the Cam Dynamics series of masters. Primarily used as an exhaust lobe with a recommended lash of 0.030” to 0.035”.

4589

<table>
<thead>
<tr>
<th>Style</th>
<th>Duration</th>
<th>Intake Lift</th>
<th>Exhaust Lift</th>
<th>Design Lobe Size Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-278/4589</td>
<td>312</td>
<td>0.0240</td>
<td>183</td>
<td>.149</td>
</tr>
<tr>
<td>R-282/4589</td>
<td>316</td>
<td>0.0240</td>
<td>187</td>
<td>.157</td>
</tr>
<tr>
<td>R-286/4589</td>
<td>320</td>
<td>0.0240</td>
<td>191</td>
<td>.164</td>
</tr>
<tr>
<td>R-288/4589</td>
<td>322</td>
<td>0.0240</td>
<td>193</td>
<td>.169</td>
</tr>
<tr>
<td>R-290/4589</td>
<td>324</td>
<td>0.0240</td>
<td>195</td>
<td>.172</td>
</tr>
<tr>
<td>R-294/4589</td>
<td>328</td>
<td>0.0240</td>
<td>198</td>
<td>.180</td>
</tr>
<tr>
<td>R-298/4589</td>
<td>332</td>
<td>0.0240</td>
<td>202</td>
<td>.188</td>
</tr>
<tr>
<td>R-302/4589</td>
<td>336</td>
<td>0.0240</td>
<td>206</td>
<td>.196</td>
</tr>
<tr>
<td>R-306/4589</td>
<td>340</td>
<td>0.0240</td>
<td>210</td>
<td>.204</td>
</tr>
<tr>
<td>R-308/4589</td>
<td>342</td>
<td>0.0240</td>
<td>212</td>
<td>.208</td>
</tr>
<tr>
<td>R-312/4589</td>
<td>346</td>
<td>0.0240</td>
<td>216</td>
<td>.216</td>
</tr>
<tr>
<td>R-314/4589</td>
<td>348</td>
<td>0.0240</td>
<td>218</td>
<td>.220</td>
</tr>
<tr>
<td>R-316/4589</td>
<td>350</td>
<td>0.0240</td>
<td>220</td>
<td>.224</td>
</tr>
<tr>
<td>R-318/4589</td>
<td>352</td>
<td>0.0240</td>
<td>222</td>
<td>.227</td>
</tr>
</tbody>
</table>

484 roller series
Used primarily as an intake lobe on large cubic inch drag race engines. Recommended lash is 0.016”.

484

<table>
<thead>
<tr>
<th>Style</th>
<th>Duration</th>
<th>Intake Lift</th>
<th>Exhaust Lift</th>
<th>Design Lobe Size Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-262/484</td>
<td>306</td>
<td>0.0120</td>
<td>180</td>
<td>.139</td>
</tr>
<tr>
<td>R-262/4841</td>
<td>306</td>
<td>0.0120</td>
<td>181</td>
<td>.131</td>
</tr>
<tr>
<td>R-262/4843</td>
<td>306</td>
<td>0.0120</td>
<td>184</td>
<td>.144</td>
</tr>
<tr>
<td>R-264/4841</td>
<td>308</td>
<td>0.0120</td>
<td>183</td>
<td>.135</td>
</tr>
<tr>
<td>R-266/484</td>
<td>310</td>
<td>0.0120</td>
<td>185</td>
<td>.147</td>
</tr>
<tr>
<td>R-266/4841</td>
<td>310</td>
<td>0.0120</td>
<td>184</td>
<td>.139</td>
</tr>
<tr>
<td>R-266/4843</td>
<td>310</td>
<td>0.0120</td>
<td>188</td>
<td>.153</td>
</tr>
<tr>
<td>R-268/4841</td>
<td>312</td>
<td>0.0120</td>
<td>186</td>
<td>.143</td>
</tr>
<tr>
<td>R-270/484</td>
<td>314</td>
<td>0.0120</td>
<td>188</td>
<td>.156</td>
</tr>
<tr>
<td>R-270/4841</td>
<td>314</td>
<td>0.0120</td>
<td>188</td>
<td>.147</td>
</tr>
<tr>
<td>R-270/4842</td>
<td>314</td>
<td>0.0120</td>
<td>188</td>
<td>.139</td>
</tr>
<tr>
<td>R-280/5003</td>
<td>324</td>
<td>0.0120</td>
<td>198</td>
<td>.168</td>
</tr>
<tr>
<td>R-292/484</td>
<td>336</td>
<td>0.0120</td>
<td>208</td>
<td>.200</td>
</tr>
<tr>
<td>R-294/4841</td>
<td>338</td>
<td>0.0120</td>
<td>210</td>
<td>.198</td>
</tr>
</tbody>
</table>

4841+ roller series
Used primarily as an intake lobe on large cubic inch drag race engines. Recommended lash is 0.016”.

4841+

<table>
<thead>
<tr>
<th>Style</th>
<th>Duration</th>
<th>Intake Lift</th>
<th>Exhaust Lift</th>
<th>Design Lobe Size Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-268/550</td>
<td>308</td>
<td>0.0120</td>
<td>193</td>
<td>.152</td>
</tr>
<tr>
<td>R-270/550</td>
<td>310</td>
<td>0.0120</td>
<td>194</td>
<td>.156</td>
</tr>
<tr>
<td>R-272/500</td>
<td>316</td>
<td>0.0120</td>
<td>190</td>
<td>.151</td>
</tr>
<tr>
<td>R-272/550</td>
<td>316</td>
<td>0.0120</td>
<td>196</td>
<td>.161</td>
</tr>
<tr>
<td>R-274/520</td>
<td>312</td>
<td>0.0120</td>
<td>198</td>
<td>.159</td>
</tr>
<tr>
<td>R-274/550</td>
<td>314</td>
<td>0.0120</td>
<td>198</td>
<td>.166</td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
<tr>
<td>4841+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-276/500</td>
<td>320</td>
<td>.0120</td>
<td>194</td>
<td>.160</td>
<td>.134</td>
</tr>
<tr>
<td>R-276/520</td>
<td>318</td>
<td>.0120</td>
<td>196</td>
<td>.163</td>
<td>.137</td>
</tr>
<tr>
<td>R-276/550</td>
<td>316</td>
<td>.0120</td>
<td>200</td>
<td>.171</td>
<td>.143</td>
</tr>
<tr>
<td>R-276/5501</td>
<td>316</td>
<td>.0120</td>
<td>202</td>
<td>.179</td>
<td>.143</td>
</tr>
<tr>
<td>R-277/520</td>
<td>319</td>
<td>.0120</td>
<td>196</td>
<td>.163</td>
<td>.139</td>
</tr>
<tr>
<td>R-278/500</td>
<td>322</td>
<td>.0120</td>
<td>196</td>
<td>.164</td>
<td>.138</td>
</tr>
<tr>
<td>R-278/520</td>
<td>320</td>
<td>.0120</td>
<td>198</td>
<td>.168</td>
<td>.141</td>
</tr>
<tr>
<td>R-278/550</td>
<td>318</td>
<td>.0120</td>
<td>204</td>
<td>.175</td>
<td>.147</td>
</tr>
<tr>
<td>R-280/520</td>
<td>322</td>
<td>.0120</td>
<td>200</td>
<td>.172</td>
<td>.145</td>
</tr>
<tr>
<td>R-280/5503</td>
<td>320</td>
<td>.0120</td>
<td>204</td>
<td>.180</td>
<td>.152</td>
</tr>
<tr>
<td>R-282/520</td>
<td>324</td>
<td>.0120</td>
<td>202</td>
<td>.177</td>
<td>.150</td>
</tr>
</tbody>
</table>

515 roller series is used primarily as an intake lobe on large cubic inch drag race engines. Recommended lash is .024".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
<tr>
<td>R-274/515</td>
<td>308</td>
<td>.0200</td>
<td>196</td>
<td>.171</td>
<td>.125</td>
</tr>
<tr>
<td>R-280/515</td>
<td>314</td>
<td>.0200</td>
<td>200</td>
<td>.183</td>
<td>.137</td>
</tr>
<tr>
<td>R-284/515</td>
<td>318</td>
<td>.0200</td>
<td>204</td>
<td>.192</td>
<td>.145</td>
</tr>
<tr>
<td>R-288/515</td>
<td>322</td>
<td>.0200</td>
<td>208</td>
<td>.199</td>
<td>.153</td>
</tr>
<tr>
<td>R-292/515</td>
<td>326</td>
<td>.0200</td>
<td>211</td>
<td>.208</td>
<td>.161</td>
</tr>
</tbody>
</table>

560 roller series is used primarily on very large cubic inch drag race engines. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
<tr>
<td>R-284/600</td>
<td>312</td>
<td>.0200</td>
<td>209</td>
<td>.203</td>
<td>.152</td>
</tr>
<tr>
<td>R-310/560</td>
<td>341</td>
<td>.0200</td>
<td>227</td>
<td>.246</td>
<td>.197</td>
</tr>
</tbody>
</table>

LH3 rollers, a collection of low harmonic lobes used in large cubic inch drag race engines. Recommended lash will vary per profile.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>.150</td>
</tr>
<tr>
<td>R-268/470</td>
<td>299</td>
<td>.0200</td>
<td>188</td>
<td>.151</td>
<td>.113</td>
</tr>
<tr>
<td>R-272/480</td>
<td>303</td>
<td>.0200</td>
<td>192</td>
<td>.160</td>
<td>.121</td>
</tr>
<tr>
<td>R-274/470</td>
<td>306</td>
<td>.0200</td>
<td>194</td>
<td>.159</td>
<td>.135</td>
</tr>
<tr>
<td>R-278/5151</td>
<td>312</td>
<td>.0200</td>
<td>194</td>
<td>.169</td>
<td>.127</td>
</tr>
<tr>
<td>R-280/5001</td>
<td>311</td>
<td>.0200</td>
<td>199</td>
<td>.179</td>
<td>.137</td>
</tr>
<tr>
<td>R-282/515</td>
<td>316</td>
<td>.0200</td>
<td>198</td>
<td>.178</td>
<td>.135</td>
</tr>
<tr>
<td>R-284/510</td>
<td>318</td>
<td>.0200</td>
<td>202</td>
<td>.184</td>
<td>.141</td>
</tr>
<tr>
<td>R-284/5152</td>
<td>318</td>
<td>.0200</td>
<td>201</td>
<td>.183</td>
<td>.139</td>
</tr>
<tr>
<td>R-286/515</td>
<td>320</td>
<td>.0200</td>
<td>202</td>
<td>.188</td>
<td>.143</td>
</tr>
<tr>
<td>R-288/510</td>
<td>322</td>
<td>.0200</td>
<td>206</td>
<td>.193</td>
<td>.157</td>
</tr>
<tr>
<td>R-296/5201</td>
<td>330</td>
<td>.0200</td>
<td>213</td>
<td>.213</td>
<td>.166</td>
</tr>
<tr>
<td>R-298/520</td>
<td>332</td>
<td>.0200</td>
<td>214</td>
<td>.216</td>
<td>.168</td>
</tr>
<tr>
<td>R-300/520</td>
<td>334</td>
<td>.0200</td>
<td>216</td>
<td>.221</td>
<td>.173</td>
</tr>
<tr>
<td>R-302/5201</td>
<td>336</td>
<td>.0200</td>
<td>218</td>
<td>.226</td>
<td>.178</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

LH3

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-304/520</td>
<td>304 .0200</td>
<td>220 .231</td>
<td>.183</td>
<td>.780</td>
<td>.832 .884 .915 F</td>
</tr>
<tr>
<td>R-308/520</td>
<td>342 .0200</td>
<td>224 .240</td>
<td>.192</td>
<td>.780</td>
<td>.832 .884 .915 F</td>
</tr>
<tr>
<td>R-310/520</td>
<td>344 .0200</td>
<td>226 .244</td>
<td>.196</td>
<td>.780</td>
<td>.832 .884 .915 F</td>
</tr>
<tr>
<td>R-312/500</td>
<td>347 .0200</td>
<td>222 .232</td>
<td>.187</td>
<td>.750</td>
<td>.800 .850 .880 E F</td>
</tr>
<tr>
<td>R-312/520</td>
<td>346 .0200</td>
<td>230 .250</td>
<td>.202</td>
<td>.780</td>
<td>.832 .884 .915 F G</td>
</tr>
<tr>
<td>R-318/5001</td>
<td>352 .0200</td>
<td>227 .241</td>
<td>.197</td>
<td>.750</td>
<td>.800 .850 .880 E F</td>
</tr>
</tbody>
</table>

LH4

LH4 roller series, a collection of low harmonic lobes used in large cubic inch engines that are slightly more aggressive than the LH3. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-255/5002</td>
<td>285 .0200</td>
<td>174 .125</td>
<td>.089</td>
<td>.750</td>
<td>.800 .850 .880 G K</td>
</tr>
<tr>
<td>R-258/5002</td>
<td>288 .0200</td>
<td>177 .130</td>
<td>.094</td>
<td>.750</td>
<td>.800 .850 .880 K</td>
</tr>
<tr>
<td>R-266/5002</td>
<td>296 .0200</td>
<td>185 .147</td>
<td>.108</td>
<td>.750</td>
<td>.800 .850 .880 G</td>
</tr>
<tr>
<td>R-270/5002</td>
<td>300 .0200</td>
<td>189 .156</td>
<td>.115</td>
<td>.750</td>
<td>.800 .850 .880 F K</td>
</tr>
<tr>
<td>R-272/4171</td>
<td>304 .0200</td>
<td>185 .151</td>
<td>.113</td>
<td>.626</td>
<td>.667 .709 .734 C</td>
</tr>
<tr>
<td>R-272/5002</td>
<td>302 .0200</td>
<td>191 .160</td>
<td>.119</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-274/5002</td>
<td>304 .0200</td>
<td>193 .164</td>
<td>.123</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-276/5002</td>
<td>306 .0200</td>
<td>195 .169</td>
<td>.126</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-277/5002</td>
<td>306 .0200</td>
<td>195 .169</td>
<td>.126</td>
<td>.780</td>
<td>.832 .884 .915 G</td>
</tr>
<tr>
<td>R-278/4201</td>
<td>310 .0200</td>
<td>191 .163</td>
<td>.124</td>
<td>.630</td>
<td>.672 .714 .736 C</td>
</tr>
<tr>
<td>R-278/5002</td>
<td>308 .0200</td>
<td>197 .173</td>
<td>.130</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-278/5402</td>
<td>308 .0200</td>
<td>200 .179</td>
<td>.138</td>
<td>.810</td>
<td>.864 .918 .951 G</td>
</tr>
<tr>
<td>R-280/4401</td>
<td>312 .0200</td>
<td>193 .167</td>
<td>.128</td>
<td>.660</td>
<td>.704 .748 .774 C F</td>
</tr>
<tr>
<td>R-280/5002</td>
<td>310 .0200</td>
<td>198 .178</td>
<td>.134</td>
<td>.750</td>
<td>.800 .850 .880 F K</td>
</tr>
<tr>
<td>R-282/4201</td>
<td>314 .0200</td>
<td>194 .172</td>
<td>.132</td>
<td>.630</td>
<td>.672 .714 .736 C</td>
</tr>
<tr>
<td>R-282/5002</td>
<td>312 .0200</td>
<td>201 .182</td>
<td>.138</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-282/530</td>
<td>312 .0200</td>
<td>201 .182</td>
<td>.138</td>
<td>.795</td>
<td>.848 .901 .933 E</td>
</tr>
<tr>
<td>R-284/5002</td>
<td>314 .0200</td>
<td>202 .187</td>
<td>.143</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-284/5153</td>
<td>314 .0200</td>
<td>203 .187</td>
<td>.143</td>
<td>.773</td>
<td>.824 .876 .906 F</td>
</tr>
<tr>
<td>R-286/5002</td>
<td>316 .0200</td>
<td>205 .192</td>
<td>.147</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-286/5152</td>
<td>316 .0200</td>
<td>205 .192</td>
<td>.147</td>
<td>.773</td>
<td>.824 .876 .906 F</td>
</tr>
<tr>
<td>R-288/5002</td>
<td>318 .0200</td>
<td>206 .197</td>
<td>.151</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-288/5152</td>
<td>318 .0200</td>
<td>206 .197</td>
<td>.151</td>
<td>.773</td>
<td>.824 .876 .906 E F G</td>
</tr>
<tr>
<td>R-290/5002</td>
<td>320 .0200</td>
<td>208 .202</td>
<td>.155</td>
<td>.750</td>
<td>.800 .850 .880 F G</td>
</tr>
<tr>
<td>R-292/5002</td>
<td>322 .0200</td>
<td>210 .207</td>
<td>.160</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-292/5152</td>
<td>322 .0200</td>
<td>210 .207</td>
<td>.160</td>
<td>.773</td>
<td>.824 .876 .906 F</td>
</tr>
<tr>
<td>R-294/5002</td>
<td>326 .0200</td>
<td>207 .198</td>
<td>.155</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
<tr>
<td>R-294/5152</td>
<td>324 .0200</td>
<td>212 .211</td>
<td>.164</td>
<td>.773</td>
<td>.824 .876 .906 E</td>
</tr>
<tr>
<td>R-294/525</td>
<td>324 .0200</td>
<td>212 .211</td>
<td>.164</td>
<td>.788</td>
<td>.840 .893 .924 E</td>
</tr>
<tr>
<td>R-296/5151</td>
<td>327 .0200</td>
<td>212 .209</td>
<td>.164</td>
<td>.773</td>
<td>.824 .876 .906 E</td>
</tr>
<tr>
<td>R-298/5002</td>
<td>330 .0200</td>
<td>211 .207</td>
<td>.163</td>
<td>.750</td>
<td>.800 .850 .880 F</td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>LH4</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHM roller series, Low Harmonic designs for very large cubic inch applications. Minimizes valve spring excitation in the RPM range of maximum engine output. Higher RPM potential than the original LH. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>LHM</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LHP roller series, Low Harmonic designs for high RPM 500 cu.in. applications. Minimizes valve spring excitation in the RPM range of maximum engine output. Higher RPM potential than the original LH. Recommended lash is .020".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>LHP</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
MECHANICAL ROLLER PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG. IN.</td>
<td>104 DEG. IN.</td>
<td>114 DEG. IN.</td>
<td>1.50</td>
<td>1.60</td>
</tr>
</tbody>
</table>

MECHANICAL ROLLER PROFILES

5401

R-266/576	295	.0200	193	.161	.115	.864	.922	.979	1.014	E
R-270/5401	299	.0200	196	.169	.123	.810	.864	.918	.950	E G
R-270/576	299	.0200	197	.171	.124	.864	.922	.979	1.014	E
R-276/5401	305	.0200	201	.183	.136	.810	.864	.918	.950	G
R-276/576	305	.0200	202	.185	.137	.864	.922	.979	1.014	E
R-276/600	305	.0200	202	.185	.136	.900	.960	1.02	1.056	G
R-278/5401	307	.0200	203	.188	.140	.810	.864	.918	.950	G
R-278/5501	307	.0200	204	.189	.140	.810	.864	.918	.950	F
R-280/5301	309	.0200	205	.192	.144	.795	.848	.901	.933	G
R-280/5401	309	.0200	205	.192	.144	.810	.864	.918	.950	F G
R-280/550	309	.0200	205	.194	.145	.825	.880	.935	.968	G
R-280/615	309	.0200	207	.197	.146	.923	.984	1.046	1.082	G
R-280/640	310	.0200	208	.200	.147	.960	1.024	1.088	1.126	G
R-282/5401	311	.0200	207	.198	.149	.810	.864	.918	.950	G
R-282/610	311	.0200	210	.205	.153	.915	.976	1.037	1.074	G
R-282/615	311	.0200	209	.203	.151	.923	.984	1.046	1.082	G
R-284/530	313	.0200	209	.202	.154	.795	.848	.901	.933	E F
R-284/5401	313	.0200	209	.203	.154	.810	.864	.918	.950	F G
R-284/550	313	.0200	209	.203	.154	.825	.880	.935	.968	F
R-284/580	313	.0200	210	.205	.155	.870	.928	.986	1.021	G
R-284/615	313	.0200	212	.211	.158	.923	.984	1.046	1.082	G
R-286/5401	315	.0200	211	.207	.158	.810	.864	.918	.950	E F G
R-286/550	315	.0200	211	.208	.159	.825	.880	.935	.968	E G
R-286/5501	315	.0200	211	.208	.159	.825	.880	.935	.968	G
R-286/560	315	.0200	211	.209	.159	.840	.896	.952	.986	E
R-286/580	315	.0200	212	.210	.159	.870	.928	.986	1.021	G
R-288/525	317	.0200	212	.211	.163	.788	.840	.893	.924	F
R-288/5401	317	.0200	213	.212	.163	.810	.864	.918	.950	G
R-292/5401	321	.0200	217	.222	.172	.810	.864	.918	.950	F
R-300/5601	331	.0200	219	.227	.178	.840	.896	.952	.986	G
R-304/600	335	.0200	223	.239	.189	.900	.960	1.02	1.056	G
R-306/5401	337	.0200	225	.242	.194	.810	.864	.918	.950	G

5401 roller series for large displacement engines with large journal diameters. Recommended lash is .020" intake and .022" exhaust.

Continued from previous page.

Continued on next page.
Mechanical Roller Profiles

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050" Tappet Lift</th>
<th>Lobe Lift</th>
<th>Gross Valve Lift with Zero Lash at Top Dead Center</th>
<th>Theoretical Rocker Ratio Shown</th>
<th>Design Lobe Size Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>5401</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-310/5401</td>
<td>340</td>
<td>.0200</td>
<td>231</td>
<td>.256</td>
<td>.207</td>
<td>.810</td>
</tr>
<tr>
<td>R-310/5601</td>
<td>341</td>
<td>.0200</td>
<td>228</td>
<td>.251</td>
<td>.201</td>
<td>.840</td>
</tr>
<tr>
<td>R-310/560</td>
<td>340</td>
<td>.0200</td>
<td>233</td>
<td>.266</td>
<td>.213</td>
<td>.900</td>
</tr>
<tr>
<td>R-312/615</td>
<td>342</td>
<td>.0200</td>
<td>236</td>
<td>.274</td>
<td>.220</td>
<td>.923</td>
</tr>
<tr>
<td>R-314/530</td>
<td>344</td>
<td>.0200</td>
<td>235</td>
<td>.262</td>
<td>.216</td>
<td>.795</td>
</tr>
<tr>
<td>R-314/5401</td>
<td>345</td>
<td>.0200</td>
<td>233</td>
<td>.259</td>
<td>.212</td>
<td>.810</td>
</tr>
<tr>
<td>R-314/600</td>
<td>344</td>
<td>.0200</td>
<td>235</td>
<td>.266</td>
<td>.218</td>
<td>.825</td>
</tr>
<tr>
<td>R-314/600</td>
<td>345</td>
<td>.0200</td>
<td>234</td>
<td>.262</td>
<td>.213</td>
<td>.840</td>
</tr>
<tr>
<td>R-314/580</td>
<td>345</td>
<td>.0200</td>
<td>234</td>
<td>.265</td>
<td>.215</td>
<td>.870</td>
</tr>
<tr>
<td>R-314/600</td>
<td>344</td>
<td>.0200</td>
<td>237</td>
<td>.277</td>
<td>.224</td>
<td>.900</td>
</tr>
<tr>
<td>R-316/515</td>
<td>347</td>
<td>.0200</td>
<td>234</td>
<td>.258</td>
<td>.213</td>
<td>.773</td>
</tr>
<tr>
<td>R-316/550</td>
<td>346</td>
<td>.0200</td>
<td>237</td>
<td>.271</td>
<td>.222</td>
<td>.825</td>
</tr>
<tr>
<td>R-316/580</td>
<td>347</td>
<td>.0200</td>
<td>237</td>
<td>.271</td>
<td>.222</td>
<td>.870</td>
</tr>
<tr>
<td>R-318/580</td>
<td>348</td>
<td>.0200</td>
<td>241</td>
<td>.282</td>
<td>.232</td>
<td>.870</td>
</tr>
<tr>
<td>R-320/5401</td>
<td>351</td>
<td>.0200</td>
<td>240</td>
<td>.272</td>
<td>.225</td>
<td>.810</td>
</tr>
<tr>
<td>R-324/5401</td>
<td>354</td>
<td>.0200</td>
<td>244</td>
<td>.284</td>
<td>.238</td>
<td>.810</td>
</tr>
</tbody>
</table>

555 roller series for engines with large cam journal diameters. This series provides very good high speed stability. Will run to 10,000+ RPM with properly set up valve train. Proven excellent performer. Recommended lash is .020" intake and .022" exhaust.
ENGINE OR APPLICATION SPECIFIC MECHANICAL ROLLER PROFILES

HC

Originally designed for Hooters Cup type .625” lift rule, HC roller series. Also used in other applications without lift rule. Recommended lash is .020” intake and .022” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE DUR. AT .050”/LOBE LIFT</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-252/390 283 .0200 166 .116 .083 .585 .585 .625 .624 .663</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-254/347 285 .0200 165 .118 .093 .521 .521 .555 .555 .590</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-254/365 287 .0200 162 .115 .083 .548 .548 .584 .584 .621</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/366 286 .0200 171 .124 .098 .549 .549 .586 .586 .622</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/3661 286 .0200 171 .121 .101 .549 .549 .586 .586 .622</td>
<td>D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-256/390 287 .0200 170 .124 .089 .585 .585 .625 .624 .663</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/347 289 .0200 168 .125 .099 .521 .521 .555 .555 .590</td>
<td>B D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/3471 286 .0200 170 .126 .102 .521 .521 .555 .555 .590</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/3472 286 .0200 170 .126 .102 .521 .521 .555 .555 .590</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/365 291 .0200 166 .121 .089 .548 .548 .584 .584 .621</td>
<td>C G</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/3651 288 .0200 172 .133 .096 .548 .548 .584 .584 .621</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-258/390 289 .0200 172 .127 .092 .585 .585 .625 .624 .663</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-260/3901 292 .0200 172 .128 .094 .585 .585 .625 .624 .663</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-260/3903</td>
<td>287</td>
<td>.0200</td>
<td>181</td>
<td>.141 .110 .585 .624 .664 .703</td>
<td>D</td>
</tr>
<tr>
<td>R-262/347</td>
<td>293</td>
<td>.0200</td>
<td>171</td>
<td>.132 .106 .521 .555 .590 .625</td>
<td>D</td>
</tr>
<tr>
<td>R-262/365</td>
<td>295</td>
<td>.0200</td>
<td>170</td>
<td>.129 .095 .548 .584 .621 .657</td>
<td>C</td>
</tr>
<tr>
<td>R-262/385</td>
<td>290</td>
<td>.0200</td>
<td>176</td>
<td>.140 .103 .578 .616 .655 .693</td>
<td>C</td>
</tr>
<tr>
<td>R-262/3901</td>
<td>295</td>
<td>.0200</td>
<td>172</td>
<td>.129 .095 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-264/365</td>
<td>297</td>
<td>.0200</td>
<td>172</td>
<td>.133 .099 .548 .584 .621 .657</td>
<td>C</td>
</tr>
<tr>
<td>R-264/3651</td>
<td>294</td>
<td>.0200</td>
<td>177</td>
<td>.143 .107 .548 .584 .621 .657</td>
<td>B D</td>
</tr>
<tr>
<td>R-264/378</td>
<td>295</td>
<td>.0200</td>
<td>177</td>
<td>.138 .108 .567 .605 .643 .680</td>
<td>C</td>
</tr>
<tr>
<td>R-264/3783</td>
<td>291</td>
<td>.0200</td>
<td>182</td>
<td>.147 .117 .567 .605 .643 .681</td>
<td>D</td>
</tr>
<tr>
<td>R-264/390</td>
<td>296</td>
<td>.0200</td>
<td>176</td>
<td>.135 .100 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-266/365</td>
<td>300</td>
<td>.0200</td>
<td>170</td>
<td>.134 .101 .548 .584 .621 .657</td>
<td>G</td>
</tr>
<tr>
<td>R-266/3651</td>
<td>296</td>
<td>.0200</td>
<td>177</td>
<td>.147 .110 .548 .584 .621 .657</td>
<td>F</td>
</tr>
<tr>
<td>R-266/366</td>
<td>297</td>
<td>.0200</td>
<td>177</td>
<td>.139 .112 .549 .586 .622 .659</td>
<td>D</td>
</tr>
<tr>
<td>R-266/390</td>
<td>298</td>
<td>.0200</td>
<td>178</td>
<td>.139 .103 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-266/417</td>
<td>295</td>
<td>.0200</td>
<td>188</td>
<td>.151 .120 .626 .667 .709 .751</td>
<td>C</td>
</tr>
<tr>
<td>R-268/365</td>
<td>302</td>
<td>.0200</td>
<td>173</td>
<td>.136 .103 .548 .584 .621 .657</td>
<td>C G</td>
</tr>
<tr>
<td>R-268/366</td>
<td>299</td>
<td>.0200</td>
<td>179</td>
<td>.143 .116 .549 .586 .622 .659</td>
<td>D</td>
</tr>
<tr>
<td>R-268/390</td>
<td>300</td>
<td>.0200</td>
<td>179</td>
<td>.143 .107 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-270/390</td>
<td>303</td>
<td>.0200</td>
<td>179</td>
<td>.143 .108 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-272/385</td>
<td>300</td>
<td>.0200</td>
<td>185</td>
<td>.157 .120 .578 .616 .655 .693</td>
<td>C</td>
</tr>
<tr>
<td>R-272/390</td>
<td>305</td>
<td>.0200</td>
<td>181</td>
<td>.147 .111 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-274/390</td>
<td>307</td>
<td>.0200</td>
<td>182</td>
<td>.151 .115 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-274/417</td>
<td>304</td>
<td>.0200</td>
<td>192</td>
<td>.161 .131 .626 .667 .709 .751</td>
<td>C</td>
</tr>
<tr>
<td>R-278/390</td>
<td>311</td>
<td>.0200</td>
<td>186</td>
<td>.159 .121 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-280/3901</td>
<td>313</td>
<td>.0200</td>
<td>188</td>
<td>.162 .125 .585 .624 .663 .702</td>
<td>C</td>
</tr>
<tr>
<td>R-286/390</td>
<td>319</td>
<td>.0200</td>
<td>194</td>
<td>.173 .136 .585 .624 .663 .702</td>
<td>C</td>
</tr>
</tbody>
</table>

RLDP

Chevrolet LS V8, RLDP mechanical roller series, stable lobes used in endurance racing applications. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-242/353</td>
<td>273</td>
<td>.0200</td>
<td>157</td>
<td>.097 .074 .600 .635</td>
<td>F</td>
</tr>
<tr>
<td>R-248/353</td>
<td>279</td>
<td>.0200</td>
<td>162</td>
<td>.108 .083 .600 .635</td>
<td>F</td>
</tr>
<tr>
<td>R-254/353</td>
<td>286</td>
<td>.0200</td>
<td>165</td>
<td>.122 .087 .600 .635</td>
<td>F</td>
</tr>
<tr>
<td>R-260/353</td>
<td>292</td>
<td>.0200</td>
<td>169</td>
<td>.131 .096 .600 .635</td>
<td>F</td>
</tr>
</tbody>
</table>

RLS

Chevrolet LS1 V8, RLS mechanical roller series, used in high speed performance applications. Recommended lash is .020" intake and .022" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-232/382</td>
<td>263</td>
<td>.0200</td>
<td>156</td>
<td>.091 .059 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-240/3821</td>
<td>269</td>
<td>.0200</td>
<td>161</td>
<td>.102 .068 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-244/382</td>
<td>273</td>
<td>.0200</td>
<td>164</td>
<td>.110 .074 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-248/382</td>
<td>277</td>
<td>.0200</td>
<td>167</td>
<td>.117 .081 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-252/382</td>
<td>281</td>
<td>.0200</td>
<td>171</td>
<td>.125 .088 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-260/382</td>
<td>289</td>
<td>.0200</td>
<td>177</td>
<td>.140 .102 .649 .688</td>
<td>F</td>
</tr>
<tr>
<td>R-276/382</td>
<td>302</td>
<td>.0200</td>
<td>190</td>
<td>.168 .130 .649 .688</td>
<td>F</td>
</tr>
</tbody>
</table>
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>CD1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-206/254</td>
<td>263</td>
<td>.0030</td>
<td>94</td>
<td>.048</td>
<td>.025</td>
</tr>
<tr>
<td>H-209/259</td>
<td>268</td>
<td>.0030</td>
<td>85</td>
<td>.053</td>
<td>.031</td>
</tr>
<tr>
<td>H-221/278</td>
<td>285</td>
<td>.0030</td>
<td>118</td>
<td>.070</td>
<td>.043</td>
</tr>
<tr>
<td>H-224/258</td>
<td>299</td>
<td>.0030</td>
<td>116</td>
<td>.072</td>
<td>.045</td>
</tr>
<tr>
<td>H-227/249</td>
<td>284</td>
<td>.0030</td>
<td>108</td>
<td>.077</td>
<td>.052</td>
</tr>
<tr>
<td>H-227/265</td>
<td>283</td>
<td>.0030</td>
<td>122</td>
<td>.079</td>
<td>.048</td>
</tr>
<tr>
<td>H-228/254</td>
<td>284</td>
<td>.0030</td>
<td>104</td>
<td>.078</td>
<td>.050</td>
</tr>
<tr>
<td>H-228/282</td>
<td>286</td>
<td>.0030</td>
<td>124</td>
<td>.079</td>
<td>.051</td>
</tr>
<tr>
<td>H-235/269</td>
<td>290</td>
<td>.0030</td>
<td>124</td>
<td>.089</td>
<td>.061</td>
</tr>
<tr>
<td>H-236/285</td>
<td>290</td>
<td>.0030</td>
<td>136</td>
<td>.092</td>
<td>.061</td>
</tr>
<tr>
<td>H-236/285</td>
<td>283</td>
<td>.0030</td>
<td>131</td>
<td>.091</td>
<td>.061</td>
</tr>
<tr>
<td>H-242/260</td>
<td>296</td>
<td>.0030</td>
<td>134</td>
<td>.099</td>
<td>.069</td>
</tr>
<tr>
<td>H-242/266</td>
<td>300</td>
<td>.0030</td>
<td>146</td>
<td>.108</td>
<td>.076</td>
</tr>
<tr>
<td>H-242/2764</td>
<td>305</td>
<td>.0030</td>
<td>137</td>
<td>.104</td>
<td>.075</td>
</tr>
<tr>
<td>H-245/264</td>
<td>307</td>
<td>.0030</td>
<td>123</td>
<td>.100</td>
<td>.071</td>
</tr>
<tr>
<td>H-246/286</td>
<td>300</td>
<td>.0030</td>
<td>146</td>
<td>.108</td>
<td>.076</td>
</tr>
<tr>
<td>H-247/287</td>
<td>305</td>
<td>.0030</td>
<td>137</td>
<td>.104</td>
<td>.075</td>
</tr>
<tr>
<td>H-248/240</td>
<td>302</td>
<td>.0030</td>
<td>136</td>
<td>.110</td>
<td>.079</td>
</tr>
<tr>
<td>H-248/296</td>
<td>302</td>
<td>.0030</td>
<td>150</td>
<td>.111</td>
<td>.079</td>
</tr>
<tr>
<td>H-248/307</td>
<td>302</td>
<td>.0030</td>
<td>152</td>
<td>.111</td>
<td>.079</td>
</tr>
<tr>
<td>H-249/264</td>
<td>308</td>
<td>.0030</td>
<td>130</td>
<td>.106</td>
<td>.078</td>
</tr>
<tr>
<td>H-250/238</td>
<td>307</td>
<td>.0030</td>
<td>104</td>
<td>.100</td>
<td>.076</td>
</tr>
<tr>
<td>H-250/286</td>
<td>304</td>
<td>.0030</td>
<td>150</td>
<td>.114</td>
<td>.082</td>
</tr>
<tr>
<td>H-250/300</td>
<td>306</td>
<td>.0030</td>
<td>145</td>
<td>.110</td>
<td>.080</td>
</tr>
<tr>
<td>H-252/260</td>
<td>306</td>
<td>.0030</td>
<td>150</td>
<td>.118</td>
<td>.086</td>
</tr>
<tr>
<td>H-252/264</td>
<td>306</td>
<td>.0030</td>
<td>144</td>
<td>.114</td>
<td>.084</td>
</tr>
<tr>
<td>H-252/296</td>
<td>306</td>
<td>.0030</td>
<td>154</td>
<td>.118</td>
<td>.085</td>
</tr>
<tr>
<td>H-252/301</td>
<td>306</td>
<td>.0030</td>
<td>154</td>
<td>.118</td>
<td>.083</td>
</tr>
<tr>
<td>H-254/2764</td>
<td>314</td>
<td>.0030</td>
<td>137</td>
<td>.111</td>
<td>.083</td>
</tr>
<tr>
<td>H-254/280</td>
<td>306</td>
<td>.0040</td>
<td>153</td>
<td>.120</td>
<td>.088</td>
</tr>
<tr>
<td>H-254/301</td>
<td>326</td>
<td>.0030</td>
<td>148</td>
<td>.111</td>
<td>.081</td>
</tr>
<tr>
<td>H-256/260</td>
<td>310</td>
<td>.0030</td>
<td>154</td>
<td>.124</td>
<td>.092</td>
</tr>
<tr>
<td>H-256/272</td>
<td>314</td>
<td>.0030</td>
<td>157</td>
<td>.118</td>
<td>.101</td>
</tr>
<tr>
<td>H-256/296</td>
<td>310</td>
<td>.0030</td>
<td>158</td>
<td>.124</td>
<td>.092</td>
</tr>
<tr>
<td>H-256/324</td>
<td>311</td>
<td>.0030</td>
<td>160</td>
<td>.125</td>
<td>.092</td>
</tr>
</tbody>
</table>

Continued on next page.
<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>CD1</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-258/240</td>
<td>312</td>
<td>.0030</td>
<td>145</td>
<td>.125</td>
<td>.094</td>
</tr>
<tr>
<td>H-258/280</td>
<td>312</td>
<td>.0030</td>
<td>156</td>
<td>.126</td>
<td>.095</td>
</tr>
<tr>
<td>H-258/290</td>
<td>312</td>
<td>.0030</td>
<td>158</td>
<td>.127</td>
<td>.095</td>
</tr>
<tr>
<td>H-258/301</td>
<td>330</td>
<td>.0030</td>
<td>151</td>
<td>.117</td>
<td>.086</td>
</tr>
<tr>
<td>H-258/307</td>
<td>312</td>
<td>.0030</td>
<td>161</td>
<td>.128</td>
<td>.095</td>
</tr>
<tr>
<td>H-259/238</td>
<td>319</td>
<td>.0030</td>
<td>110</td>
<td>.109</td>
<td>.086</td>
</tr>
<tr>
<td>H-260/278</td>
<td>319</td>
<td>.0030</td>
<td>142</td>
<td>.120</td>
<td>.092</td>
</tr>
<tr>
<td>H-260/2781</td>
<td>312</td>
<td>.0040</td>
<td>158</td>
<td>.130</td>
<td>.098</td>
</tr>
<tr>
<td>H-260/296</td>
<td>314</td>
<td>.0030</td>
<td>162</td>
<td>.130</td>
<td>.098</td>
</tr>
<tr>
<td>H-260/315</td>
<td>314</td>
<td>.0030</td>
<td>164</td>
<td>.131</td>
<td>.098</td>
</tr>
<tr>
<td>H-261/248</td>
<td>323</td>
<td>.0030</td>
<td>124</td>
<td>.114</td>
<td>.089</td>
</tr>
<tr>
<td>H-262/301</td>
<td>316</td>
<td>.0030</td>
<td>164</td>
<td>.134</td>
<td>.101</td>
</tr>
<tr>
<td>H-262/3011</td>
<td>334</td>
<td>.0030</td>
<td>152</td>
<td>.122</td>
<td>.092</td>
</tr>
<tr>
<td>H-262/325</td>
<td>316</td>
<td>.0030</td>
<td>167</td>
<td>.135</td>
<td>.102</td>
</tr>
<tr>
<td>H-264/260</td>
<td>320</td>
<td>.0030</td>
<td>152</td>
<td>.131</td>
<td>.102</td>
</tr>
<tr>
<td>H-264/282</td>
<td>322</td>
<td>.0030</td>
<td>166</td>
<td>.130</td>
<td>.113</td>
</tr>
<tr>
<td>H-264/2844</td>
<td>320</td>
<td>.0030</td>
<td>152</td>
<td>.128</td>
<td>.100</td>
</tr>
<tr>
<td>H-264/296</td>
<td>318</td>
<td>.0030</td>
<td>165</td>
<td>.137</td>
<td>.105</td>
</tr>
<tr>
<td>H-265/3034</td>
<td>322</td>
<td>.0030</td>
<td>162</td>
<td>.136</td>
<td>.106</td>
</tr>
<tr>
<td>H-266/260</td>
<td>320</td>
<td>.0030</td>
<td>161</td>
<td>.138</td>
<td>.107</td>
</tr>
<tr>
<td>H-266/273</td>
<td>320</td>
<td>.0030</td>
<td>160</td>
<td>.136</td>
<td>.105</td>
</tr>
<tr>
<td>H-266/294</td>
<td>318</td>
<td>.0030</td>
<td>157</td>
<td>.133</td>
<td>.104</td>
</tr>
<tr>
<td>H-266/307</td>
<td>320</td>
<td>.0030</td>
<td>168</td>
<td>.140</td>
<td>.108</td>
</tr>
<tr>
<td>H-268/296</td>
<td>322</td>
<td>.0030</td>
<td>169</td>
<td>.143</td>
<td>.111</td>
</tr>
<tr>
<td>H-268/301</td>
<td>340</td>
<td>.0030</td>
<td>158</td>
<td>.131</td>
<td>.101</td>
</tr>
<tr>
<td>H-268/315</td>
<td>322</td>
<td>.0030</td>
<td>172</td>
<td>.144</td>
<td>.111</td>
</tr>
<tr>
<td>H-270/301</td>
<td>324</td>
<td>.0030</td>
<td>172</td>
<td>.146</td>
<td>.114</td>
</tr>
<tr>
<td>H-272/273</td>
<td>326</td>
<td>.0030</td>
<td>172</td>
<td>.150</td>
<td>.118</td>
</tr>
<tr>
<td>H-272/273</td>
<td>328</td>
<td>.0030</td>
<td>162</td>
<td>.143</td>
<td>.114</td>
</tr>
<tr>
<td>H-272/280</td>
<td>326</td>
<td>.0030</td>
<td>170</td>
<td>.148</td>
<td>.117</td>
</tr>
<tr>
<td>H-272/290</td>
<td>326</td>
<td>.0030</td>
<td>172</td>
<td>.149</td>
<td>.117</td>
</tr>
<tr>
<td>H-272/315</td>
<td>326</td>
<td>.0030</td>
<td>175</td>
<td>.151</td>
<td>.118</td>
</tr>
<tr>
<td>H-272/325</td>
<td>326</td>
<td>.0030</td>
<td>177</td>
<td>.151</td>
<td>.118</td>
</tr>
<tr>
<td>H-274/296</td>
<td>328</td>
<td>.0030</td>
<td>174</td>
<td>.152</td>
<td>.121</td>
</tr>
<tr>
<td>H-278/326</td>
<td>332</td>
<td>.0030</td>
<td>180</td>
<td>.158</td>
<td>.126</td>
</tr>
<tr>
<td>F-246/318</td>
<td>282</td>
<td>.0120</td>
<td>155</td>
<td>.113</td>
<td>.078</td>
</tr>
<tr>
<td>F-252/318</td>
<td>288</td>
<td>.0120</td>
<td>159</td>
<td>.123</td>
<td>.088</td>
</tr>
</tbody>
</table>

Continued on next page.
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD1</td>
<td>Continuation from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFILES FOR FLAT TAPPET STOCK LIFT RULES APPLICATIONS

CD1

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-254/301</td>
<td>326</td>
<td>.0030</td>
<td>148</td>
<td>.111 .081 .451 .482 .512 .530</td>
<td>625</td>
</tr>
<tr>
<td>F-254/3101</td>
<td>292</td>
<td>.0120</td>
<td>156</td>
<td>.121 .093 .465 .496 .527 .546</td>
<td>695</td>
</tr>
<tr>
<td>F-258/301</td>
<td>330</td>
<td>.0030</td>
<td>151</td>
<td>.117 .086 .451 .482 .512 .530</td>
<td>626</td>
</tr>
<tr>
<td>F-258/3071</td>
<td>318</td>
<td>.0300</td>
<td>157</td>
<td>.124 .093 .461 .491 .522 .540</td>
<td>644</td>
</tr>
<tr>
<td>F-260/3060</td>
<td>322</td>
<td>.0030</td>
<td>156</td>
<td>.125 .095 .459 .490 .520 .539</td>
<td>260M</td>
</tr>
<tr>
<td>F-260/310</td>
<td>296</td>
<td>.0120</td>
<td>161</td>
<td>.133 .100 .465 .496 .527 .546</td>
<td>691</td>
</tr>
<tr>
<td>F-261/307</td>
<td>328</td>
<td>.0030</td>
<td>155</td>
<td>.124 .094 .461 .491 .522 .540</td>
<td>832</td>
</tr>
<tr>
<td>F-261/3071</td>
<td>324</td>
<td>.0300</td>
<td>161</td>
<td>.129 .097 .461 .491 .522 .540</td>
<td>643</td>
</tr>
<tr>
<td>F-262/3234</td>
<td>324</td>
<td>.0030</td>
<td>162</td>
<td>.130 .098 .485 .517 .550 .569</td>
<td>262M</td>
</tr>
<tr>
<td>F-262/329</td>
<td>328</td>
<td>.0030</td>
<td>166</td>
<td>.132 .097 .494 .526 .559 .579</td>
<td>631</td>
</tr>
<tr>
<td>F-266/310</td>
<td>302</td>
<td>.0120</td>
<td>165</td>
<td>.140 .109 .465 .496 .527 .546</td>
<td>692</td>
</tr>
<tr>
<td>F-268/301</td>
<td>340</td>
<td>.0030</td>
<td>158</td>
<td>.131 .101 .452 .482 .512 .530</td>
<td>627</td>
</tr>
<tr>
<td>F-268/3060</td>
<td>330</td>
<td>.0030</td>
<td>164</td>
<td>.137 .107 .459 .490 .520 .539</td>
<td>268M</td>
</tr>
<tr>
<td>F-272/3095</td>
<td>337</td>
<td>.0030</td>
<td>166</td>
<td>.141 .111 .465 .496 .527 .546</td>
<td>869</td>
</tr>
<tr>
<td>F-270/3451</td>
<td>306</td>
<td>.0120</td>
<td>180</td>
<td>.155 .121 .518 .552 .587 .607</td>
<td>693</td>
</tr>
<tr>
<td>F-272/3234</td>
<td>334</td>
<td>.0030</td>
<td>172</td>
<td>.145 .113 .485 .517 .550 .569</td>
<td>272M</td>
</tr>
<tr>
<td>F-272/345</td>
<td>326</td>
<td>.0030</td>
<td>186</td>
<td>.161 .124 .518 .552 .587 .607</td>
<td>636</td>
</tr>
<tr>
<td>F-274/345</td>
<td>310</td>
<td>.0120</td>
<td>193</td>
<td>.161 .127 .518 .552 .587 .607</td>
<td>694</td>
</tr>
<tr>
<td>F-274/360</td>
<td>310</td>
<td>.0120</td>
<td>187</td>
<td>.165 .129 .540 .576 .612 .634</td>
<td>687</td>
</tr>
<tr>
<td>F-276/3090</td>
<td>338</td>
<td>.0030</td>
<td>170</td>
<td>.149 .119 .464 .494 .525 .544</td>
<td>276M</td>
</tr>
<tr>
<td>F-278/3290</td>
<td>340</td>
<td>.0030</td>
<td>176</td>
<td>.154 .123 .494 .526 .559 .579</td>
<td>278M</td>
</tr>
<tr>
<td>F-278/345</td>
<td>332</td>
<td>.0030</td>
<td>192</td>
<td>.171 .135 .518 .552 .587 .607</td>
<td>867</td>
</tr>
<tr>
<td>F-278/370</td>
<td>314</td>
<td>.0120</td>
<td>192</td>
<td>.174 .138 .555 .592 .629 .651</td>
<td>688</td>
</tr>
</tbody>
</table>

CD2

CD2 hydraulic and mechanical lifter Cam Dynamics stocker series—Dwell at Max Lift

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-235/261</td>
<td>289</td>
<td>.0030</td>
<td>131</td>
<td>.091 .064 .392 .418 .444 .459</td>
<td>742</td>
</tr>
<tr>
<td>H-242/2600</td>
<td>300</td>
<td>.0030</td>
<td>135</td>
<td>.092 .063 .390 .416 .442 .458</td>
<td>754</td>
</tr>
<tr>
<td>H-244/307</td>
<td>297</td>
<td>.0030</td>
<td>150</td>
<td>.085 .096 .461 .491 .522 .540</td>
<td>747</td>
</tr>
<tr>
<td>H-250/307</td>
<td>304</td>
<td>.0030</td>
<td>155</td>
<td>.103 .096 .461 .491 .522 .540</td>
<td>748</td>
</tr>
<tr>
<td>H-252/2603</td>
<td>302</td>
<td>.0030</td>
<td>154</td>
<td>.121 .088 .390 .416 .443 .458</td>
<td>654</td>
</tr>
<tr>
<td>H-252/316</td>
<td>302</td>
<td>.0040</td>
<td>161</td>
<td>.121 .087 .474 .506 .537 .556</td>
<td>666</td>
</tr>
<tr>
<td>H-254/272</td>
<td>308</td>
<td>.0030</td>
<td>150</td>
<td>.120 .088 .408 .435 .462 .479</td>
<td>753</td>
</tr>
<tr>
<td>H-254/2721</td>
<td>308</td>
<td>.0030</td>
<td>159</td>
<td>.125 .091 .408 .435 .462 .479</td>
<td>676</td>
</tr>
</tbody>
</table>

Continued on next page.
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
</tbody>
</table>

PROFILES FOR FLAT TAPPET AND HYDRAULIC ROLLER STOCK LIFT RULES APPLICATIONS

CD2

Continued from previous page.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-256/242</td>
<td>308 .0030 146 .121 .091 .363 .387 .411 .426 682</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-256/2603</td>
<td>306 .0030 160 .129 .095 .390 .416 .443 .458 678</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-256/269</td>
<td>306 .0030 128 .128 .094 .404 .430 .457 .473 661</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-256/284</td>
<td>312 .0030 166 .133 .098 .426 .454 .483 .500 677</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-256/312</td>
<td>308 .0040 166 .131 .097 .468 .499 .530 .549 664</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-262/309</td>
<td>315 .0030 166 .120 .112 .461 .491 .522 .540 749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-264/2603</td>
<td>314 .0030 166 .140 .108 .390 .416 .443 .458 663</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-264/2604</td>
<td>314 .0030 170 .144 .110 .390 .417 .443 .458 700</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-266/262</td>
<td>318 .0030 163 .138 .107 .393 .419 .445 .461 683</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-266/277</td>
<td>316 .0030 169 .142 .109 .416 .443 .471 .488 662</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-266/316</td>
<td>316 .0040 175 .145 .111 .474 .506 .537 .556 667</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-268/307</td>
<td>322 .0030 172 .134 .125 .461 .491 .522 .540 756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-272/2733</td>
<td>322 .0030 177 .154 .121 .410 .437 .465 .481 655</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-276/273</td>
<td>332 .0030 165 .148 .120 .410 .437 .464 .480 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-276/2733</td>
<td>328 .0030 184 .164 .131 .410 .437 .465 .481 679</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-276/2734</td>
<td>328 .0030 186 .167 .133 .410 .437 .635 .481 701</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-276/3082</td>
<td>328 .0030 184 .161 .127 .462 .493 .524 .542 276M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-278/326</td>
<td>326 .0030 180 .159 .126 .489 .522 .554 .574 757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-284/308</td>
<td>338 .0030 191 .162 .152 .462 .493 .524 .542 745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-252/244</td>
<td>286 .0120 151 .122 .089 .366 .390 .415 .429 849</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-254/310</td>
<td>305 .0030 164 .126 .091 .465 .496 .527 .546 671</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-260/244</td>
<td>294 .0120 159 .135 .102 .366 .390 .415 .429 850</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-262/3101</td>
<td>313 .0030 172 .140 .105 .465 .496 .527 .546 681</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-264/244</td>
<td>298 .0120 163 .141 .109 .366 .390 .415 .429 852</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-268/310</td>
<td>319 .0030 178 .151 .116 .465 .496 .527 .546 672</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-276/258</td>
<td>310 .0120 179 .161 .130 .387 .413 .439 .454 851</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD3

CD3 hydraulic roller Cam Dynamics stocker series—Non Dwell.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-238/300</td>
<td>298 .0040 150 .097 .065 .450 .480 .510 .528 295HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-244/268</td>
<td>300 .0030 136 .104 .073 .402 .429 .456 .472 292HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-244/278</td>
<td>300 .0030 152 .105 .073 .417 .445 .473 .489 263HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-246/286</td>
<td>302 .0030 158 .114 .078 .429 .458 .486 .503 702HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-246/300</td>
<td>306 .0040 156 .111 .077 .450 .480 .510 .528 296HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-250/286</td>
<td>306 .0030 162 .121 .085 .429 .458 .486 .503 703HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HR-250/300</td>
<td>306 .0040 165 .121 .084 .450 .480 .510 .528 704HR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page.
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>CAM DYNAMICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFILES FOR HYDRAULIC ROLLER STOCK LIFT RULES APPLICATIONS

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur.</th>
<th>Dur. at .050”</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR-252/268</td>
<td>0.0030</td>
<td>.050”</td>
<td>.085</td>
<td>.402 .429 .456 .472</td>
<td>293HR</td>
</tr>
<tr>
<td>HR-252/290</td>
<td>0.0040</td>
<td>.050”</td>
<td>.084</td>
<td>.435 .464 .493 .510</td>
<td>646HR</td>
</tr>
<tr>
<td>HR-252/300</td>
<td>0.0040</td>
<td>.050”</td>
<td>.087</td>
<td>.450 .480 .510 .528</td>
<td>297HR</td>
</tr>
<tr>
<td>HR-252/3001</td>
<td>0.0040</td>
<td>.050”</td>
<td>.084</td>
<td>.450 .480 .510 .528</td>
<td>645HR</td>
</tr>
<tr>
<td>HR-252/316</td>
<td>0.0040</td>
<td>.050”</td>
<td>.086</td>
<td>.474 .506 .537 .556</td>
<td>650HR</td>
</tr>
<tr>
<td>HR-252/3161</td>
<td>0.0040</td>
<td>.050”</td>
<td>.087</td>
<td>.474 .506 .537 .556</td>
<td>674HR</td>
</tr>
<tr>
<td>HR-254/278</td>
<td>0.0030</td>
<td>.050”</td>
<td>.089</td>
<td>.417 .445 .473 .489</td>
<td>264HR</td>
</tr>
<tr>
<td>HR-254/310</td>
<td>0.0040</td>
<td>.050”</td>
<td>.089</td>
<td>.465 .496 .527 .546</td>
<td>670HR</td>
</tr>
<tr>
<td>HR-256/345</td>
<td>0.0030</td>
<td>.050”</td>
<td>.096</td>
<td>.518 .552 .587 .607</td>
<td>686HR</td>
</tr>
<tr>
<td>HR-258/300</td>
<td>0.0040</td>
<td>.050”</td>
<td>.093</td>
<td>.450 .480 .510 .528</td>
<td>629HR</td>
</tr>
<tr>
<td>HR-258/3001</td>
<td>0.0040</td>
<td>.050”</td>
<td>.098</td>
<td>.450 .480 .510 .528</td>
<td>455HR</td>
</tr>
<tr>
<td>HR-258/306</td>
<td>0.0040</td>
<td>.050”</td>
<td>.100</td>
<td>.459 .490 .520 .539</td>
<td>689HR</td>
</tr>
<tr>
<td>HR-258/310</td>
<td>0.0040</td>
<td>.050”</td>
<td>.096</td>
<td>.465 .496 .527 .546</td>
<td>652HR</td>
</tr>
<tr>
<td>HR-260/268</td>
<td>0.0030</td>
<td>.050”</td>
<td>.099</td>
<td>.531 .566 .602 .623</td>
<td>657HR</td>
</tr>
<tr>
<td>HR-260/290</td>
<td>0.0040</td>
<td>.050”</td>
<td>.097</td>
<td>.402 .429 .456 .472</td>
<td>294HR</td>
</tr>
<tr>
<td>HR-260/300</td>
<td>0.0040</td>
<td>.050”</td>
<td>.102</td>
<td>.435 .464 .493 .510</td>
<td>617HR</td>
</tr>
<tr>
<td>HR-264/340</td>
<td>0.0040</td>
<td>.050”</td>
<td>.107</td>
<td>.510 .544 .578 .598</td>
<td>651HR</td>
</tr>
<tr>
<td>HR-264/3401</td>
<td>0.0040</td>
<td>.050”</td>
<td>.109</td>
<td>.510 .544 .578 .599</td>
<td>675HR</td>
</tr>
<tr>
<td>HR-266/306</td>
<td>0.0040</td>
<td>.050”</td>
<td>.109</td>
<td>.510 .544 .578 .599</td>
<td>630HR</td>
</tr>
<tr>
<td>HR-266/3061</td>
<td>0.0040</td>
<td>.050”</td>
<td>.109</td>
<td>.510 .544 .578 .599</td>
<td>456HR</td>
</tr>
<tr>
<td>HR-266/320</td>
<td>0.0040</td>
<td>.050”</td>
<td>.110</td>
<td>.480 .512 .544 .563</td>
<td>653HR</td>
</tr>
<tr>
<td>HR-266/360</td>
<td>0.0030</td>
<td>.050”</td>
<td>.114</td>
<td>.540 .576 .612 .634</td>
<td>658HR</td>
</tr>
<tr>
<td>HR-268/3121</td>
<td>0.0040</td>
<td>.050”</td>
<td>.119</td>
<td>.468 .499 .531 .549</td>
<td>690HR</td>
</tr>
<tr>
<td>HR-270/345</td>
<td>0.0030</td>
<td>.050”</td>
<td>.122</td>
<td>.518 .552 .587 .607</td>
<td>669HR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200” TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>Minimum Tappet Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF5</td>
<td>Continued from previous page.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PROFILES FOR SPECIALTY OHV AND FLATHEAD APPLICATIONS

These profiles may be used in other applications. Consult with the Crane Cams technical staff for recommendations.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Refer to Page 2 for details.</th>
</tr>
</thead>
</table>
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-262/336</td>
<td>300</td>
<td>.0160</td>
<td>.136</td>
<td>.102</td>
<td>.504</td>
</tr>
<tr>
<td>F-272/350</td>
<td>310</td>
<td>.0160</td>
<td>.153</td>
<td>.119</td>
<td>.525</td>
</tr>
<tr>
<td>F-282/367</td>
<td>320</td>
<td>.0160</td>
<td>.179</td>
<td>.136</td>
<td>.546</td>
</tr>
<tr>
<td>F-292/382</td>
<td>330</td>
<td>.0160</td>
<td>.195</td>
<td>.153</td>
<td>.567</td>
</tr>
</tbody>
</table>

PROFILES FOR SPECIALTY OHV AND FLATHEAD APPLICATIONS

MF5

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-262/336</td>
<td>300</td>
<td>.0160</td>
<td>.136</td>
<td>.102</td>
<td>.504</td>
</tr>
<tr>
<td>F-272/350</td>
<td>310</td>
<td>.0160</td>
<td>.153</td>
<td>.119</td>
<td>.525</td>
</tr>
<tr>
<td>F-282/367</td>
<td>320</td>
<td>.0160</td>
<td>.179</td>
<td>.136</td>
<td>.546</td>
</tr>
<tr>
<td>F-292/382</td>
<td>330</td>
<td>.0160</td>
<td>.195</td>
<td>.153</td>
<td>.567</td>
</tr>
</tbody>
</table>

VW1

VW1 mechanical series for VW Type 4 opposed-4, with .941” tappet diameter.

Recommended cold lash is .006” intake and .008” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-230/328</td>
<td>278</td>
<td>.0160</td>
<td>.082</td>
<td>.053</td>
<td>.426</td>
</tr>
<tr>
<td>F-240/338</td>
<td>288</td>
<td>.0160</td>
<td>.098</td>
<td>.066</td>
<td>.436</td>
</tr>
<tr>
<td>F-250/3677</td>
<td>296</td>
<td>.0140</td>
<td>.121</td>
<td>.084</td>
<td>.478</td>
</tr>
</tbody>
</table>

OHC1

OHC1 mechanical series for VW Type 1 opposed-4, with 1.000” tappet diameter. Recommended cold lash is .002”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-210/305</td>
<td>264</td>
<td>.0120</td>
<td>.053</td>
<td>.026</td>
<td>.345</td>
</tr>
<tr>
<td>F-220/320</td>
<td>274</td>
<td>.0120</td>
<td>.071</td>
<td>.039</td>
<td>.362</td>
</tr>
<tr>
<td>F-230/340</td>
<td>284</td>
<td>.0120</td>
<td>.089</td>
<td>.053</td>
<td>.384</td>
</tr>
<tr>
<td>F-240/360</td>
<td>294</td>
<td>.0120</td>
<td>.109</td>
<td>.070</td>
<td>.407</td>
</tr>
<tr>
<td>F-250/380</td>
<td>304</td>
<td>.0120</td>
<td>.129</td>
<td>.089</td>
<td>.429</td>
</tr>
<tr>
<td>F-260/400</td>
<td>314</td>
<td>.0120</td>
<td>.149</td>
<td>.108</td>
<td>.452</td>
</tr>
</tbody>
</table>

MF6

MF6 mechanical series for flathead engines with a minimum tappet diameter of .996”. Minimum design base circle radius is .900” minus lobe lift. Recommended cold lash is .010” intake, and .014” exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-198/290</td>
<td>238</td>
<td>.0080</td>
<td>.033</td>
<td>.026</td>
<td>.345</td>
</tr>
<tr>
<td>F-208/310</td>
<td>248</td>
<td>.0080</td>
<td>.050</td>
<td>.029</td>
<td>.362</td>
</tr>
<tr>
<td>F-218/330</td>
<td>258</td>
<td>.0080</td>
<td>.069</td>
<td>.033</td>
<td>.384</td>
</tr>
<tr>
<td>F-228/350</td>
<td>258</td>
<td>.0140</td>
<td>.089</td>
<td>.053</td>
<td>.407</td>
</tr>
<tr>
<td>F-238/370</td>
<td>264</td>
<td>.0140</td>
<td>.109</td>
<td>.089</td>
<td>.429</td>
</tr>
<tr>
<td>F-248/390</td>
<td>274</td>
<td>.0140</td>
<td>.129</td>
<td>.089</td>
<td>.452</td>
</tr>
<tr>
<td>F-258/410</td>
<td>284</td>
<td>.0140</td>
<td>.149</td>
<td>.109</td>
<td>.476</td>
</tr>
</tbody>
</table>

MF7

MF7 mechanical series for industrial engines used in tractor pulling competition with a minimum tappet diameter of 1.100”. Recommended lash is .016” to .018”.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 200° TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>MINIMUM TAPPET DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>1/104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.50</td>
</tr>
<tr>
<td>F-200/302</td>
<td>240</td>
<td>.0100</td>
<td>.037</td>
<td>.016</td>
<td>.453</td>
</tr>
<tr>
<td>F-210/322</td>
<td>250</td>
<td>.0100</td>
<td>.054</td>
<td>.024</td>
<td>.483</td>
</tr>
<tr>
<td>F-220/342</td>
<td>260</td>
<td>.0100</td>
<td>.074</td>
<td>.037</td>
<td>.513</td>
</tr>
<tr>
<td>F-230/362</td>
<td>270</td>
<td>.0100</td>
<td>.096</td>
<td>.054</td>
<td>.543</td>
</tr>
<tr>
<td>F-240/382</td>
<td>280</td>
<td>.0100</td>
<td>.119</td>
<td>.074</td>
<td>.573</td>
</tr>
</tbody>
</table>
MECHANICAL ROLLER PROFILES FOR SPECIALTY OHV APPLICATIONS

MR3

MR3 mechanical roller series for industrial engines used in tractor pulling competition with a minimum journal size of 2.200" diameter. Recommended lash is .016" to .018".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-200/302</td>
<td>252 .0100 117 .040 .021 .453 .483 .513 .532</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-210/322</td>
<td>262 .0100 129 .053 .029 .483 .515 .547 .567</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-220/342</td>
<td>272 .0100 141 .068 .038 .513 .547 .581 .602</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-226/354</td>
<td>278 .0100 148 .078 .047 .531 .566 .602 .623</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-230/362</td>
<td>282 .0100 152 .085 .053 .543 .579 .615 .637</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-236/374</td>
<td>288 .0100 159 .096 .061 .561 .598 .636 .658</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-240/382</td>
<td>292 .0100 163 .104 .068 .573 .611 .649 .672</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-250/402</td>
<td>302 .0100 173 .125 .085 .603 .643 .683 .708</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MR4

MR4 mechanical roller series for industrial engines used in tractor pulling competition with a minimum journal size of 2.200" diameter. Recommended lash is .020" to .022".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-192/380</td>
<td>219 .0200 124 .029 .014 .570 .608 .646 .669</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-200/375</td>
<td>236 .0200 126 .041 .024 .563 .600 .638 .660</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-208/385</td>
<td>236 .0200 136 .047 .029 .578 .616 .655 .678</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-210/390</td>
<td>246 .0200 136 .054 .033 .585 .624 .663 .686</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-212/395</td>
<td>240 .0200 140 .053 .033 .593 .632 .672 .693</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-212/405</td>
<td>240 .0200 141 .053 .033 .608 .648 .689 .713</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-214/370</td>
<td>250 .0200 140 .058 .035 .555 .592 .629 .651</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-214/380</td>
<td>246 .0200 139 .056 .035 .570 .608 .646 .669</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-220/405</td>
<td>256 .0200 146 .066 .041 .608 .648 .689 .713</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-224/425</td>
<td>252 .0200 152 .072 .047 .638 .680 .723 .748</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-226/380</td>
<td>258 .0200 146 .072 .050 .570 .608 .646 .669</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-230/420</td>
<td>266 .0200 156 .082 .052 .630 .672 .714 .739</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-232/380</td>
<td>264 .0200 150 .081 .058 .570 .608 .646 .669</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-234/390</td>
<td>270 .0200 158 .090 .058 .585 .624 .663 .686</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-236/429</td>
<td>272 .0200 162 .092 .060 .644 .686 .729 .755</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-240/435</td>
<td>276 .0200 166 .099 .066 .653 .696 .740 .766</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-250/450</td>
<td>286 .0200 175 .120 .081 .675 .720 .765 .792</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TPR400

TPR400 mechanical roller series with .400" lobe lift, for industrial engines used in tractor pulling competition with a minimum journal size of 2.200" diameter. Recommended lash is .020" to .022".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-216/400</td>
<td>252 .0200 142 .060 .037 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-226/400</td>
<td>262 .0200 151 .075 .048 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-228/400</td>
<td>264 .0200 153 .078 .050 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-230/400</td>
<td>266 .0200 155 .082 .052 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-236/400</td>
<td>272 .0200 160 .092 .060 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-246/400</td>
<td>282 .0200 169 .112 .075 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-248/4001</td>
<td>284 .0200 171 .116 .078 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R-250/4001</td>
<td>286 .0200 172 .121 .082 .600 .640 .680 .704</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT 200°</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
<th>DESIGN LOBE SIZE CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>TAPPET LIFT AT</td>
<td>104 DEG. IN.</td>
<td>114 DEG. EXHAUST</td>
<td>.500</td>
</tr>
<tr>
<td>DUR. AT .050" LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>200° TAPPET LIFT</td>
<td>INTAKE</td>
<td>EXHAUST</td>
</tr>
</tbody>
</table>

MECHANICAL ROLLER PROFILES FOR SPECIALTY OHV APPLICATIONS

TPR450 mechanical roller series with .450" lobe lift, for industrial engines used in tractor pulling competition with a minimum journal size of 2.200" diameter. Recommended lash is .020" to .022".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT 200°</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALUE LIFT WITH ZERO LASH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>TAPPET LIFT AT</td>
<td>104 DEG. IN.</td>
<td>114 DEG. EXHAUST</td>
</tr>
<tr>
<td>DUR. AT .050" LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>200° TAPPET LIFT</td>
<td>INTAKE</td>
</tr>
</tbody>
</table>

PROFILES FOR DIRECT ACTUATION FOLLOWER SOHC AND DOHC APPLICATIONS

OHC2 hydraulic series for OHC engines using bucket style followers with a minimum diameter of 1.308" and a minimum design base circle radius of 1.000" minus lobe lift.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT 200°</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>TAPPET LIFT AT</td>
<td>104 DEG. IN.</td>
<td>114 DEG. EXHAUST</td>
</tr>
<tr>
<td>DUR. AT .050" LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>200° TAPPET LIFT</td>
<td>INTAKE</td>
</tr>
</tbody>
</table>

OHC3 hydraulic series for OHC engines using bucket style followers with a minimum diameter of 1.500" and a minimum design base circle radius of .700".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT 200°</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>TAPPET LIFT AT</td>
<td>104 DEG. IN.</td>
<td>114 DEG. EXHAUST</td>
</tr>
<tr>
<td>DUR. AT .050" LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>200° TAPPET LIFT</td>
<td>INTAKE</td>
</tr>
</tbody>
</table>

OHC5 mechanical series for OHC engines using bucket style followers with a minimum tappet diameter of .960" and a base circle radius of .550". Recommended cold lash is .008" intake, and .010" exhaust.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR.</th>
<th>DUR. AT 200°</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DUR. AT TAPPET LIFT</td>
<td>TAPPET LIFT AT</td>
<td>104 DEG. IN.</td>
<td>114 DEG. EXHAUST</td>
</tr>
<tr>
<td>DUR. AT .050" LOBE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>200° TAPPET LIFT</td>
<td>INTAKE</td>
</tr>
</tbody>
</table>

cranecams.com | 866.388.5120
Specialized Profiles

Profiles for Direct Actuation Follower SOHC and DOHC Applications

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>MINIMUM FOLLOWER DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
</tr>
<tr>
<td>OHC1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-210/305</td>
<td>264</td>
<td>.0120</td>
<td>129</td>
<td>.053</td>
<td>.026</td>
</tr>
<tr>
<td>F-220/320</td>
<td>274</td>
<td>.0120</td>
<td>140</td>
<td>.071</td>
<td>.039</td>
</tr>
<tr>
<td>F-230/340</td>
<td>284</td>
<td>.0120</td>
<td>150</td>
<td>.089</td>
<td>.053</td>
</tr>
<tr>
<td>F-240/360</td>
<td>294</td>
<td>.0120</td>
<td>162</td>
<td>.109</td>
<td>.070</td>
</tr>
<tr>
<td>F-250/380</td>
<td>304</td>
<td>.0120</td>
<td>174</td>
<td>.129</td>
<td>.089</td>
</tr>
<tr>
<td>F-260/400</td>
<td>314</td>
<td>.0120</td>
<td>184</td>
<td>.149</td>
<td>.108</td>
</tr>
<tr>
<td>OHC4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-236/340</td>
<td>284</td>
<td>.0052</td>
<td>156</td>
<td>.104</td>
<td>.065</td>
</tr>
<tr>
<td>F-242/360</td>
<td>290</td>
<td>.0052</td>
<td>163</td>
<td>.115</td>
<td>.076</td>
</tr>
<tr>
<td>F-246/380</td>
<td>294</td>
<td>.0052</td>
<td>170</td>
<td>.126</td>
<td>.083</td>
</tr>
<tr>
<td>F-252/388</td>
<td>298</td>
<td>.0052</td>
<td>172</td>
<td>.134</td>
<td>.095</td>
</tr>
<tr>
<td>F-256/397</td>
<td>302</td>
<td>.0052</td>
<td>182</td>
<td>.148</td>
<td>.104</td>
</tr>
<tr>
<td>F-262/400</td>
<td>308</td>
<td>.0052</td>
<td>186</td>
<td>.159</td>
<td>.119</td>
</tr>
<tr>
<td>F-272/412</td>
<td>318</td>
<td>.0052</td>
<td>198</td>
<td>.179</td>
<td>.139</td>
</tr>
<tr>
<td>OHC6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-264/390</td>
<td>306</td>
<td>.0120</td>
<td>184</td>
<td>.154</td>
<td>.115</td>
</tr>
<tr>
<td>F-268/398</td>
<td>310</td>
<td>.0120</td>
<td>188</td>
<td>.162</td>
<td>.123</td>
</tr>
<tr>
<td>F-274/410</td>
<td>316</td>
<td>.0120</td>
<td>194</td>
<td>.174</td>
<td>.134</td>
</tr>
<tr>
<td>F-278/418</td>
<td>320</td>
<td>.0120</td>
<td>198</td>
<td>.181</td>
<td>.142</td>
</tr>
<tr>
<td>F-288/438</td>
<td>330</td>
<td>.0120</td>
<td>208</td>
<td>.199</td>
<td>.163</td>
</tr>
<tr>
<td>OHC7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-240/380</td>
<td>280</td>
<td>.0140</td>
<td>168</td>
<td>.114</td>
<td>.072</td>
</tr>
<tr>
<td>F-260/420</td>
<td>300</td>
<td>.0140</td>
<td>188</td>
<td>.157</td>
<td>.113</td>
</tr>
<tr>
<td>OHC8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-206/310</td>
<td>250</td>
<td>.0050</td>
<td>128</td>
<td>.047</td>
<td>.019</td>
</tr>
<tr>
<td>F-216/330</td>
<td>260</td>
<td>.0050</td>
<td>140</td>
<td>.065</td>
<td>.031</td>
</tr>
<tr>
<td>F-226/350</td>
<td>270</td>
<td>.0050</td>
<td>152</td>
<td>.085</td>
<td>.046</td>
</tr>
<tr>
<td>F-236/370</td>
<td>280</td>
<td>.0050</td>
<td>164</td>
<td>.107</td>
<td>.065</td>
</tr>
<tr>
<td>F-246/390</td>
<td>290</td>
<td>.0050</td>
<td>176</td>
<td>.130</td>
<td>.086</td>
</tr>
<tr>
<td>F-256/410</td>
<td>300</td>
<td>.0050</td>
<td>186</td>
<td>.153</td>
<td>.108</td>
</tr>
<tr>
<td>F-266/430</td>
<td>310</td>
<td>.0050</td>
<td>196</td>
<td>.177</td>
<td>.131</td>
</tr>
<tr>
<td>F-276/450</td>
<td>320</td>
<td>.0050</td>
<td>208</td>
<td>.200</td>
<td>.154</td>
</tr>
<tr>
<td>F-286/470</td>
<td>330</td>
<td>.0050</td>
<td>218</td>
<td>.224</td>
<td>.178</td>
</tr>
</tbody>
</table>
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" LOBE LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>MINIMUM FOLLOWER DIAMETER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>SEE PAGE 2</td>
</tr>
</tbody>
</table>

PROFILES FOR DIRECT ACTUATION FOLLOWER SOHC AND DOHC APPLICATIONS

OHC9

OHC9 mechanical series for OHC engines using bucket style followers with a minimum diameter of 1.180" and a minimum design base circle radius of .970" minus lobe lift. Recommended cold lash is .006" intake, and .008" exhaust.

<table>
<thead>
<tr>
<th>Code</th>
<th>Advertised DUR.</th>
<th>Tappet Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-258/450</td>
<td>300</td>
<td>.0040</td>
<td>194</td>
<td>.168</td>
<td>.119</td>
</tr>
<tr>
<td>F-268/470</td>
<td>310</td>
<td>.0040</td>
<td>204</td>
<td>.190</td>
<td>.142</td>
</tr>
</tbody>
</table>

OHC11

OHC11 mechanical series for OHC engines using bucket style followers with a minimum diameter of 1.200" and a minimum design base circle radius of .900" minus lobe lift. Recommended cold lash is .008" intake, and .010" exhaust.

<table>
<thead>
<tr>
<th>Code</th>
<th>Advertised DUR.</th>
<th>Tappet Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-270/465</td>
<td>302</td>
<td>.0100</td>
<td>214</td>
<td>.204</td>
<td>.155</td>
</tr>
<tr>
<td>F-280/480</td>
<td>312</td>
<td>.0100</td>
<td>219</td>
<td>.227</td>
<td>.179</td>
</tr>
</tbody>
</table>

OHC12

OHC12 mechanical series for OHC engines using bucket style followers with a minimum diameter of 1.220" and a minimum design base circle radius of 1.150" minus lobe lift. Recommended cold lash is .018".

<table>
<thead>
<tr>
<th>Code</th>
<th>Advertised DUR.</th>
<th>Tappet Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-222/408</td>
<td>270</td>
<td>.0140</td>
<td>157</td>
<td>.072</td>
<td>.045</td>
</tr>
<tr>
<td>F-232/428</td>
<td>280</td>
<td>.0140</td>
<td>167</td>
<td>.095</td>
<td>.061</td>
</tr>
<tr>
<td>F-242/448</td>
<td>290</td>
<td>.0140</td>
<td>176</td>
<td>.117</td>
<td>.078</td>
</tr>
<tr>
<td>F-252/468</td>
<td>300</td>
<td>.0140</td>
<td>186</td>
<td>.143</td>
<td>.099</td>
</tr>
<tr>
<td>F-284/492</td>
<td>332</td>
<td>.0140</td>
<td>220</td>
<td>.231</td>
<td>.182</td>
</tr>
</tbody>
</table>

OHC13

OHC13 mechanical series for OHC engines using bucket style followers with a minimum diameter of 1.375" and a minimum design base circle radius of 1.135" minus lobe lift. Recommended cold lash is .018".

<table>
<thead>
<tr>
<th>Code</th>
<th>Advertised DUR.</th>
<th>Tappet Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-234/432</td>
<td>258</td>
<td>.0200</td>
<td>176</td>
<td>.116</td>
<td>.063</td>
</tr>
<tr>
<td>F-260/525</td>
<td>308</td>
<td>.0140</td>
<td>200</td>
<td>.175</td>
<td>.122</td>
</tr>
<tr>
<td>F-270/545</td>
<td>318</td>
<td>.0140</td>
<td>209</td>
<td>.201</td>
<td>.148</td>
</tr>
<tr>
<td>F-276/558</td>
<td>324</td>
<td>.0140</td>
<td>215</td>
<td>.219</td>
<td>.165</td>
</tr>
<tr>
<td>F-282/570</td>
<td>330</td>
<td>.0140</td>
<td>221</td>
<td>.238</td>
<td>.181</td>
</tr>
</tbody>
</table>

OHC10

OHC10 mechanical miscellaneous profiles for OHC engines using bucket style followers of various tappet diameters and lobe sizes. Contact the Crane Cams technical staff for recommendations.

<table>
<thead>
<tr>
<th>Code</th>
<th>Advertised DUR.</th>
<th>Tappet Lift</th>
<th>Top Dead Center</th>
<th>Gross Lift</th>
<th>Minimum Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-230/440</td>
<td>292</td>
<td>.0140</td>
<td>168</td>
<td>.095</td>
<td>.053</td>
</tr>
<tr>
<td>F-240/470</td>
<td>302</td>
<td>.0140</td>
<td>180</td>
<td>.121</td>
<td>.072</td>
</tr>
<tr>
<td>F-262/420</td>
<td>300</td>
<td>.0100</td>
<td>197</td>
<td>.176</td>
<td>.129</td>
</tr>
<tr>
<td>F-262/450</td>
<td>300</td>
<td>.0100</td>
<td>200</td>
<td>.181</td>
<td>.131</td>
</tr>
<tr>
<td>F-280/530</td>
<td>322</td>
<td>.0050</td>
<td>220</td>
<td>.233</td>
<td>.178</td>
</tr>
<tr>
<td>F-284/488</td>
<td>324</td>
<td>.0140</td>
<td>219</td>
<td>.227</td>
<td>.177</td>
</tr>
</tbody>
</table>
Specialized Profiles

Engine Specific Profiles for Direct Actuation Follower SOHC and DOHC Applications

These profiles may be used in other applications. Consult with the Crane Cams technical staff for recommendations.

Ford Zetec DOHC 2.0L 4-valve I-4, mechanical series. These lobes use a base circle radius of .709". Recommended lash is .006" intake and .010" exhaust. (223 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at 200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Minimum Follower Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-206/366</td>
<td>228</td>
<td>.0200</td>
<td>142</td>
<td>.046</td>
<td>.020</td>
</tr>
<tr>
<td>F-210/374</td>
<td>232</td>
<td>.0200</td>
<td>146</td>
<td>.054</td>
<td>.024</td>
</tr>
<tr>
<td>F-214/382</td>
<td>236</td>
<td>.0200</td>
<td>150</td>
<td>.063</td>
<td>.029</td>
</tr>
<tr>
<td>F-218/390</td>
<td>240</td>
<td>.0200</td>
<td>154</td>
<td>.072</td>
<td>.033</td>
</tr>
<tr>
<td>F-226/410</td>
<td>248</td>
<td>.0200</td>
<td>164</td>
<td>.090</td>
<td>.046</td>
</tr>
<tr>
<td>F-236/435</td>
<td>258</td>
<td>.0200</td>
<td>174</td>
<td>.115</td>
<td>.068</td>
</tr>
<tr>
<td>F-246/460</td>
<td>268</td>
<td>.0200</td>
<td>184</td>
<td>.139</td>
<td>.090</td>
</tr>
</tbody>
</table>

Ford Duratec DOHC 2.3L 4-valve I-4, mechanical series. These lobes use a base circle radius of .650". Recommended lash is .010" intake and .012" exhaust. (224 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at 200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Minimum Follower Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-204/354</td>
<td>224</td>
<td>.0200</td>
<td>140</td>
<td>.042</td>
<td>.017</td>
</tr>
<tr>
<td>F-212/374</td>
<td>232</td>
<td>.0200</td>
<td>150</td>
<td>.068</td>
<td>.024</td>
</tr>
<tr>
<td>F-216/385</td>
<td>238</td>
<td>.0200</td>
<td>154</td>
<td>.066</td>
<td>.030</td>
</tr>
<tr>
<td>F-226/410</td>
<td>248</td>
<td>.0200</td>
<td>164</td>
<td>.090</td>
<td>.046</td>
</tr>
<tr>
<td>F-236/435</td>
<td>258</td>
<td>.0200</td>
<td>174</td>
<td>.115</td>
<td>.068</td>
</tr>
<tr>
<td>F-246/460</td>
<td>268</td>
<td>.0200</td>
<td>184</td>
<td>.139</td>
<td>.090</td>
</tr>
<tr>
<td>F-256/485</td>
<td>278</td>
<td>.0200</td>
<td>194</td>
<td>.165</td>
<td>.115</td>
</tr>
</tbody>
</table>

Hyundai DOHC 2.7L 4-valve V6, hydraulic series. These lobes use a base circle radius of .709"

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at 200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Minimum Follower Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHCHYU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-202/341</td>
<td>236</td>
<td>.0060</td>
<td>136</td>
<td>.038</td>
<td>.011</td>
</tr>
<tr>
<td>H-216/370</td>
<td>252</td>
<td>.0060</td>
<td>152</td>
<td>.068</td>
<td>.028</td>
</tr>
</tbody>
</table>

Toyota DOHC 1.6L 4-valve 4AG I-4, mechanical series. These lobes use a base circle radius of .550". Recommended lash is .008" intake and .010" exhaust.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at 200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Minimum Follower Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC44G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-242/410</td>
<td>268</td>
<td>.0200</td>
<td>173</td>
<td>.119</td>
<td>.075</td>
</tr>
<tr>
<td>F-248/424</td>
<td>274</td>
<td>.0200</td>
<td>179</td>
<td>.133</td>
<td>.087</td>
</tr>
</tbody>
</table>

Toyota DOHC 3.0L 4-valve I-6, mechanical series. These lobes use a base circle radius of .709". Recommended lash is .008" intake and .012" exhaust. (705 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at 200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Minimum Follower Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>OHC15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F-214/362</td>
<td>236</td>
<td>.0200</td>
<td>146</td>
<td>.061</td>
<td>.022</td>
</tr>
<tr>
<td>F-222/378</td>
<td>244</td>
<td>.0200</td>
<td>154</td>
<td>.079</td>
<td>.039</td>
</tr>
<tr>
<td>F-230/394</td>
<td>252</td>
<td>.0200</td>
<td>162</td>
<td>.097</td>
<td>.054</td>
</tr>
<tr>
<td>F-238/410</td>
<td>260</td>
<td>.0200</td>
<td>170</td>
<td>.115</td>
<td>.071</td>
</tr>
<tr>
<td>F-246/426</td>
<td>268</td>
<td>.0200</td>
<td>178</td>
<td>.133</td>
<td>.088</td>
</tr>
<tr>
<td>F-254/442</td>
<td>276</td>
<td>.0200</td>
<td>186</td>
<td>.151</td>
<td>.105</td>
</tr>
<tr>
<td>F-262/458</td>
<td>284</td>
<td>.0200</td>
<td>192</td>
<td>.169</td>
<td>.122</td>
</tr>
</tbody>
</table>
Specialized Profiles

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050(^\circ) Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Deg.</td>
<td>In.</td>
<td>104 Deg. Intake</td>
<td>114 Deg. Exhaust</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACU-202/400INT</td>
<td>228</td>
<td>.0200</td>
<td>97</td>
<td>.041</td>
<td>.020</td>
<td>.224</td>
</tr>
<tr>
<td>ACU-206/400INT</td>
<td>232</td>
<td>.0200</td>
<td>99</td>
<td>.047</td>
<td>.023</td>
<td>.224</td>
</tr>
<tr>
<td>ACU-204/388EXH</td>
<td>242</td>
<td>.0200</td>
<td>94</td>
<td>.044</td>
<td>.025</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-208/388EXH</td>
<td>246</td>
<td>.0200</td>
<td>95</td>
<td>.050</td>
<td>.027</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-212/388EXH</td>
<td>250</td>
<td>.0200</td>
<td>97</td>
<td>.056</td>
<td>.031</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-218/433</td>
<td>246</td>
<td>.0200</td>
<td>114</td>
<td>.067</td>
<td>.036</td>
<td>.240</td>
</tr>
<tr>
<td>ACU-226/453</td>
<td>254</td>
<td>.0200</td>
<td>125</td>
<td>.083</td>
<td>.047</td>
<td>.250</td>
</tr>
<tr>
<td>ACU-234/472</td>
<td>262</td>
<td>.0200</td>
<td>134</td>
<td>.101</td>
<td>.060</td>
<td>.260</td>
</tr>
</tbody>
</table>

Engine Specific Profiles for Translating Follower SOHC and DOHC Applications

These profiles may be used in other applications. Consult with the Crane Cams technical staff for recommendations.

ACU

Acura DOHC 1.8L 4-valve B18A1 I-4, mechanical series. Recommended lash is .004” intake and .008” exhaust. (Crane Cams 101 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050(^\circ) Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACU-202/400INT</td>
<td>228</td>
<td>.0200</td>
<td>97</td>
<td>.041</td>
<td>.020</td>
<td>.224</td>
</tr>
<tr>
<td>ACU-206/400INT</td>
<td>232</td>
<td>.0200</td>
<td>99</td>
<td>.047</td>
<td>.023</td>
<td>.224</td>
</tr>
<tr>
<td>ACU-204/388EXH</td>
<td>242</td>
<td>.0200</td>
<td>94</td>
<td>.044</td>
<td>.025</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-208/388EXH</td>
<td>246</td>
<td>.0200</td>
<td>95</td>
<td>.050</td>
<td>.027</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-212/388EXH</td>
<td>250</td>
<td>.0200</td>
<td>97</td>
<td>.056</td>
<td>.031</td>
<td>.218</td>
</tr>
<tr>
<td>ACU-218/433</td>
<td>246</td>
<td>.0200</td>
<td>114</td>
<td>.067</td>
<td>.036</td>
<td>.240</td>
</tr>
<tr>
<td>ACU-226/453</td>
<td>254</td>
<td>.0200</td>
<td>125</td>
<td>.083</td>
<td>.047</td>
<td>.250</td>
</tr>
<tr>
<td>ACU-234/472</td>
<td>262</td>
<td>.0200</td>
<td>134</td>
<td>.101</td>
<td>.060</td>
<td>.260</td>
</tr>
</tbody>
</table>

GMHEC

Chevrolet / GM DOHC 2.2L 4-valve Ecotec I-4, hydraulic series.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050(^\circ) Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-197/428</td>
<td>238</td>
<td>.0060</td>
<td>101</td>
<td>.039</td>
<td>.008</td>
<td>.252</td>
</tr>
<tr>
<td>GM-201/440</td>
<td>242</td>
<td>.0060</td>
<td>106</td>
<td>.045</td>
<td>.011</td>
<td>.259</td>
</tr>
<tr>
<td>GM-224/475</td>
<td>266</td>
<td>.0060</td>
<td>128</td>
<td>.090</td>
<td>.033</td>
<td>.280</td>
</tr>
</tbody>
</table>

GMMEC

Chevrolet / GM DOHC 2.2L 4-valve Ecotec I-4, mechanical series. Recommended lash is .007” intake and .009” exhaust, set between the follower and base circle.

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050(^\circ) Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>GM-236/520</td>
<td>261</td>
<td>.0200</td>
<td>139</td>
<td>.102</td>
<td>.063</td>
<td>.3067</td>
</tr>
<tr>
<td>GM-246/520</td>
<td>271</td>
<td>.0200</td>
<td>147</td>
<td>.126</td>
<td>.081</td>
<td>.3067</td>
</tr>
<tr>
<td>GM-250/502</td>
<td>275</td>
<td>.0200</td>
<td>148</td>
<td>.136</td>
<td>.089</td>
<td>.2960</td>
</tr>
<tr>
<td>GM-256/520</td>
<td>281</td>
<td>.0200</td>
<td>155</td>
<td>.152</td>
<td>.102</td>
<td>.3067</td>
</tr>
<tr>
<td>GM-266/520</td>
<td>291</td>
<td>.0200</td>
<td>163</td>
<td>.178</td>
<td>.126</td>
<td>.3067</td>
</tr>
<tr>
<td>GM-266/550</td>
<td>294</td>
<td>.0200</td>
<td>160</td>
<td>.167</td>
<td>.116</td>
<td>.3243</td>
</tr>
<tr>
<td>GM-280/540</td>
<td>308</td>
<td>.0200</td>
<td>169</td>
<td>.198</td>
<td>.149</td>
<td>.3180</td>
</tr>
<tr>
<td>GM-290/540</td>
<td>318</td>
<td>.0200</td>
<td>178</td>
<td>.223</td>
<td>.172</td>
<td>.3180</td>
</tr>
</tbody>
</table>

CHR

Chrysler SOHC 2.0L 4-valve I-4, hydraulic roller series. Lobes designed for a base radius of .550” or less, and require Ferrea lash caps #C10008. (Crane 158 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050(^\circ) Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR-196/335INT</td>
<td>242</td>
<td>.0060</td>
<td>60</td>
<td>.021</td>
<td>.216</td>
<td>.335</td>
</tr>
<tr>
<td>CHR-204/355INT</td>
<td>250</td>
<td>.0060</td>
<td>76</td>
<td>.031</td>
<td>.230</td>
<td>.355</td>
</tr>
<tr>
<td>CHR-216/355INT</td>
<td>262</td>
<td>.0060</td>
<td>80</td>
<td>.051</td>
<td>.230</td>
<td>.355</td>
</tr>
<tr>
<td>CHR-226/355INT</td>
<td>272</td>
<td>.0060</td>
<td>84</td>
<td>.072</td>
<td>.230</td>
<td>.355</td>
</tr>
<tr>
<td>CHR-232/400INT</td>
<td>280</td>
<td>.0060</td>
<td>108</td>
<td>.080</td>
<td>.245</td>
<td>.400</td>
</tr>
<tr>
<td>CHR-236/440INT</td>
<td>280</td>
<td>.0060</td>
<td>120</td>
<td>.091</td>
<td>.269</td>
<td>.440</td>
</tr>
<tr>
<td>CHR-200/315EXH</td>
<td>250</td>
<td>.0060</td>
<td>40</td>
<td>.020</td>
<td>.207</td>
<td>.315</td>
</tr>
<tr>
<td>CHR-212/345EXH</td>
<td>262</td>
<td>.0060</td>
<td>72</td>
<td>.031</td>
<td>.228</td>
<td>.345</td>
</tr>
<tr>
<td>CHR-226/345EXH</td>
<td>282</td>
<td>.0060</td>
<td>76</td>
<td>.047</td>
<td>.228</td>
<td>.345</td>
</tr>
<tr>
<td>CHR-230/400EXH</td>
<td>285</td>
<td>.0060</td>
<td>104</td>
<td>.052</td>
<td>.257</td>
<td>.400</td>
</tr>
</tbody>
</table>
SPECIALIZED PROFILES

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR2 Chrysler DOHC 2.0-2.4L 4-valve I-4, hydraulic roller series. (Crane 180 and 193 prefix)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHR-196/345</td>
<td>238</td>
<td>.060</td>
<td>68</td>
<td>.033</td>
<td>.012</td>
<td>.198</td>
</tr>
<tr>
<td>CHR-200/354</td>
<td>242</td>
<td>.060</td>
<td>76</td>
<td>.038</td>
<td>.016</td>
<td>.204</td>
</tr>
<tr>
<td>CHR-204/364</td>
<td>246</td>
<td>.060</td>
<td>82</td>
<td>.044</td>
<td>.019</td>
<td>.210</td>
</tr>
<tr>
<td>CHR-208/374</td>
<td>250</td>
<td>.060</td>
<td>88</td>
<td>.050</td>
<td>.023</td>
<td>.216</td>
</tr>
<tr>
<td>CHR-216/394</td>
<td>258</td>
<td>.060</td>
<td>100</td>
<td>.064</td>
<td>.034</td>
<td>.228</td>
</tr>
<tr>
<td>CHR-224/413</td>
<td>266</td>
<td>.060</td>
<td>112</td>
<td>.078</td>
<td>.044</td>
<td>.239</td>
</tr>
<tr>
<td>CHR-232/433</td>
<td>274</td>
<td>.060</td>
<td>122</td>
<td>.096</td>
<td>.057</td>
<td>.251</td>
</tr>
<tr>
<td>CHR-240/453</td>
<td>282</td>
<td>.060</td>
<td>132</td>
<td>.114</td>
<td>.070</td>
<td>.264</td>
</tr>
<tr>
<td>CHR-248/472</td>
<td>290</td>
<td>.060</td>
<td>142</td>
<td>.134</td>
<td>.087</td>
<td>.275</td>
</tr>
<tr>
<td>CHR-256/492</td>
<td>298</td>
<td>.060</td>
<td>152</td>
<td>.154</td>
<td>.104</td>
<td>.287</td>
</tr>
<tr>
<td>CHR-264/492</td>
<td>306</td>
<td>.060</td>
<td>158</td>
<td>.175</td>
<td>.123</td>
<td>.287</td>
</tr>
<tr>
<td>CHR-268/492</td>
<td>310</td>
<td>.060</td>
<td>161</td>
<td>.185</td>
<td>.133</td>
<td>.287</td>
</tr>
<tr>
<td>CHR-272/500</td>
<td>314</td>
<td>.060</td>
<td>166</td>
<td>.196</td>
<td>.144</td>
<td>.292</td>
</tr>
<tr>
<td>CHR-290/550</td>
<td>334</td>
<td>.060</td>
<td>186</td>
<td>.244</td>
<td>.190</td>
<td>.323</td>
</tr>
</tbody>
</table>

CHR3 Chrysler SOHC 4.7L V8, hydraulic roller series. Re grind base circle radius of .826”. Must use 99424-16 lash caps.

CHR206/502	242	.060	124	.044	.015	.271	.502	0.826
CHR212/502	248	.060	128	.056	.022	.271	.502	0.826
CHR218/463	254	.060	126	.070	.030	.251	.463	0.826
CHR218/502	254	.060	134	.070	.030	.271	.502	0.826
CHR224/520	260	.060	140	.085	.044	.280	.520	0.826

FOR1 Ford SOHC 2.0L I-4, mechanical series, using stock base circle size and stock length valve, with no lash cap. Recommended lash is .008” intake, and .010”, set between the follower and base circle. (Crane 14 prefix)

FOR222/410	262	.120	112	.079	.040	.253	.410	0.590
FOR232/435	272	.120	128	.103	.058	.267	.435	0.590
FOR242/460	282	.120	140	.130	.080	.282	.460	0.590

FOR2 Ford SOHC 2.0L I-4, mechanical series, using a .050” longer valve than stock or a stock length valve with a .050” thick lash cap. Recommended lash is .010”, set between follower and base circle. (Crane 14 prefix)

FOR264/510	300	.160	160	.179	.128	.314	.510	0.500
FOR274/535	310	.160	172	.208	.154	.326	.535	0.500
FOR284/560	320	.160	184	.237	.182	.336	.560	0.500

HFOR3 Ford SOHC 2.3L I-4, hydraulic series, using cast followers and stock hydraulic adjusters. Cams are ground on the stock base circle size and use a stock length valve with no lash cap. (Crane 19 prefix)

HFOR220/454	270	.060	123	.074	.037	.285	.454	0.590
HFOR226/420	272	.060	120	.091	.046	.245	.420	0.590
HFOR230/479	280	.060	135	.097	.054	.300	.459	0.590
HFOR234/420	280	.060	126	.111	.062	.245	.420	0.590

Continued on next page.
Specialized Profiles

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine Specific Profiles for Translating Follower SOHC and DOHC Applications

HFOR

Continued from previous page.

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HFOR3

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HFOR-240/504

288 .0060 148 .131 .076 .315 .504 0.590

HFOR-254/420

298 .0060 132 .142 .097 .245 .420 0.590

FORD4

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HFOR-234/460 INT

278 .0060 133 .109 .061 .284 .460 0.590

HFOR-242/480 EXH

286 .0060 143 .130 .078 .295 .480 0.590

FOR5

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FORD5

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOR-254/485

290 .0160 148 .152 .103 .279 .485 0.590

FOR-264/510

300 .0160 160 .179 .128 .293 .510 0.557

FOR-268/520

304 .0160 165 .191 .138 .297 .520 0.590

FOR-274/460

312 .0160 150 .165 .123 .283 .460 0.525

FOR-274/535

310 .0160 172 .208 .154 .306 .535 0.545

FOR-284/560

320 .0160 184 .237 .182 .319 .560 0.533

HFOR6

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RFOR-214/420

252 .0060 112 .061 .028 .227 .420 0.590

RFOR-226/420

274 .0060 119 .087 .047 .228 .420 0.590

RFOR-234/420

282 .0060 124 .106 .060 .228 .420 0.590

RFOR-234/450

282 .0060 131 .106 .060 .243 .450 0.590

RFOR-242/480

290 .0060 142 .127 .076 .259 .480 0.590

RFOR-250/510

298 .0060 152 .148 .094 .274 .510 0.590

HFOR7

<table>
<thead>
<tr>
<th>CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT 300° VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RFOR-244/536

276 .0220 145 .118 .074 .298 .536 0.500

RFOR-252/560

284 .0220 154 .140 .092 .311 .560 0.500

RFOR-256/572

288 .0220 161 .153 .101 .317 .572 0.500

RFOR-260/584

292 .0220 163 .162 .110 .323 .584 0.500

RFOR-264/596

296 .0220 170 .176 .120 .330 .596 0.500

RFOR-268/608

300 .0220 171 .185 .130 .336 .608 0.500

RFOR-272/620

304 .0220 178 .202 .141 .342 .620 0.500

RFOR-276/632

308 .0220 180 .210 .151 .349 .632 0.500

RFOR-284/656

316 .0220 188 .235 .174 .361 .656 0.500

RFOR-292/680

324 .0220 196 .261 .198 .374 .680 0.500

RFOR-296/692

328 .0220 200 .275 .210 .380 .692 0.500

Ford SOHC 2.3L I-4, hydraulic series, using cast followers and stock hydraulic adjusters. Cams are ground on a reduced base circle requiring a .100” longer valve than stock, or a stock length valve with a .100” thick lash cap. (Crane 19 prefix)

Ford SOHC 2.3L I-4, mechanical series, using cast followers and a .100” longer valve than stock, or a stock length valve with a .100” thick lash cap. Recommended lash is .010”, set between follower and base circle. (Crane 19 prefix)

Ford SOHC 2.3L I-4, hydraulic roller series, using stock roller followers and an 8620 steel camshaft. Valve train is based on hydraulic adjusters and a stock-length Ford valve. (Crane 19 prefix)

Ford SOHC 2.3L I-4, mechanical roller series, using stock roller followers and 8620 steel camshafts. Valve train geometry is based on a 4.900” length valve. Recommended lash is .010” intake and .012” exhaust, set between roller and base circle. (Crane 19 prefix)
<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .050" VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUR. AT .050"/VALVE LIFT</td>
<td>DEG.</td>
<td>IN.</td>
<td>104 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ENGINE SPECIFIC PROFILES FOR TRANSLATING FOLLOWER SOHC AND DOHC APPLICATIONS

HR2V

- **HR-218/500**: 254 .0060 .133 .072 .032 .274 .500 0.947
- **HR-218/550**: 254 .0060 .139 .072 .032 .300 .550 0.947
- **HR-228/500**: 264 .0060 .140 .097 .050 .274 .500 0.947
- **HR-228/550**: 264 .0060 .146 .098 .050 .300 .550 0.947
- **HR-230/575**: 266 .0060 .151 .104 .054 .313 .575 0.947
- **HR-234/500**: 270 .0060 .144 .114 .062 .274 .500 0.947
- **HR-234/550**: 270 .0060 .151 .116 .063 .300 .550 0.947
- **HR-234/575**: 270 .0060 .154 .116 .063 .313 .575 0.947
- **HR-236/600**: 272 .0060 .158 .122 .067 .326 .600 0.947
- **HR-238/575**: 274 .0060 .157 .124 .072 .313 .575 0.947
- **HR-242/575**: 278 .0060 .161 .141 .082 .313 .575 0.947
- **HR-242/600**: 278 .0060 .163 .142 .082 .326 .600 0.947

HR2VH

- **HR-212/550**: 248 .0060 .134 .058 .024 .300 .550 0.947
- **HR-216/565**: 252 .0060 .138 .067 .029 .308 .565 0.947
- **HR-220/580**: 256 .0060 .143 .077 .036 .315 .580 0.947
- **HR-224/595**: 260 .0060 .147 .087 .042 .323 .595 0.947
- **HR-228/610**: 264 .0060 .152 .098 .050 .331 .610 0.947
- **HR-232/625**: 268 .0060 .156 .110 .058 .339 .625 0.947
- **HR-236/625**: 272 .0060 .160 .122 .067 .339 .625 0.947
- **HR-240/625**: 276 .0060 .163 .135 .077 .339 .625 0.947

HR3V

- **HR-208/468**: 256 .0060 .116 .050 .025 .2293 .468 0.886
- **HR-216/492**: 264 .0060 .125 .064 .033 .2406 .492 0.886
- **HR-224/516**: 272 .0060 .134 .080 .044 .2519 .516 0.886
- **HR-228/528**: 276 .0060 .139 .088 .050 .2575 .528 0.886
- **HR-236/552**: 284 .0060 .147 .107 .064 .2687 .552 0.886
- **HR-248/576**: 292 .0060 .155 .128 .080 .2799 .576 0.886
- **HR-252/600**: 300 .0060 .163 .151 .097 .2910 .600 0.886

HR3VL

- **HR-218/480**: 266 .0060 .124 .067 .036 .2350 .480 0.886
- **HR-224/480**: 272 .0060 .128 .079 .044 .2350 .480 0.886
- **HR-230/480**: 278 .0060 .133 .092 .053 .2350 .480 0.886
- **HR-242/480**: 291 .0060 .139 .117 .074 .2350 .480 0.886

HR2V

- **HR-218/500**: 254 .0060 .133 .072 .032 .274 .500 0.947
- **HR-228/500**: 264 .0060 .140 .097 .050 .274 .500 0.947
- **HR-234/500**: 270 .0060 .144 .114 .062 .274 .500 0.947
Specialized Profiles

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Engine Specific Profiles for Translating Follower SOHC and DOHC Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR4V</td>
<td>Ford SOHC 4.6–5.4L 4-valve V8, hydraulic roller high lift series. (Crane 40 prefix)</td>
</tr>
<tr>
<td>HR-246/575</td>
<td>282 .0060 164 .154 .093 .313 .575 0.947</td>
</tr>
<tr>
<td>HR-254/510</td>
<td>294 .0060 159 .164 .108 .2791 .510 0.947</td>
</tr>
<tr>
<td>HR-260/540</td>
<td>300 .0060 168 .184 .125 .2947 .540 0.947</td>
</tr>
<tr>
<td>Honda SOHC 1.6L 4-valve D16A6 I-4, mechanical series.</td>
<td></td>
</tr>
<tr>
<td>HON-200/384INT</td>
<td>226 .0200 91 .037 .019 .236 .384 0.610</td>
</tr>
<tr>
<td>HON-206/394INT</td>
<td>232 .0200 98 .047 .023 .242 .394 0.610</td>
</tr>
<tr>
<td>HON-216/425INT</td>
<td>242 .0200 114 .065 .032 .260 .425 0.610</td>
</tr>
<tr>
<td>Honda SOHC VTEC 4-valve D16Y8 I-4, mechanical series.</td>
<td></td>
</tr>
<tr>
<td>HON-186/210</td>
<td>214 .0200 44 .024 .200 .319 0.630</td>
</tr>
<tr>
<td>HON-190/295</td>
<td>205 .0200 53 .028 .205 .327 0.630</td>
</tr>
<tr>
<td>HON-224/433INT</td>
<td>258 .0200 115 .077 .259 .423 0.630</td>
</tr>
<tr>
<td>Honda DOHC VTEC 4-valve B16A I-4, mechanical series.</td>
<td></td>
</tr>
<tr>
<td>HON-180/210</td>
<td>216 .0200 — .024 .016 .145 .210 0.581</td>
</tr>
<tr>
<td>HON-180/295</td>
<td>205 .0200 — .018 .010 .199 .295 0.581</td>
</tr>
<tr>
<td>HON-190/288</td>
<td>222 .0200 — .031 .018 .1947 .288 0.581</td>
</tr>
<tr>
<td>HON-190/315</td>
<td>215 .0200 40 .026 .012 .211 .315 0.581</td>
</tr>
<tr>
<td>HON-200/307</td>
<td>232 .0200 30 .040 .022 .207 .307 0.581</td>
</tr>
<tr>
<td>HON-200/315</td>
<td>225 .0200 43 .038 .018 .211 .315 0.581</td>
</tr>
<tr>
<td>HON-200/335</td>
<td>225 .0200 62 .038 .018 .224 .332 0.581</td>
</tr>
<tr>
<td>HON-210/355</td>
<td>235 .0200 78 .053 .026 .236 .355 0.581</td>
</tr>
<tr>
<td>HON-220/354</td>
<td>245 .0200 83 .071 .038 .235 .354 0.581</td>
</tr>
<tr>
<td>HON-230/425</td>
<td>254 .0200 121 .096 .053 .272 .425 0.581</td>
</tr>
<tr>
<td>HON-236/441</td>
<td>260 .0200 132 .111 .065 .281 .441 0.581</td>
</tr>
<tr>
<td>HON-242/457</td>
<td>266 .0200 138 .127 .077 .289 .457 0.581</td>
</tr>
<tr>
<td>HON-248/472</td>
<td>272 .0200 145 .143 .091 .297 .472 0.581</td>
</tr>
<tr>
<td>HON-254/488</td>
<td>278 .0200 153 .160 .106 .306 .488 0.581</td>
</tr>
<tr>
<td>HON-260/472</td>
<td>284 .0200 153 .172 .121 .297 .472 0.581</td>
</tr>
<tr>
<td>HON-260/504</td>
<td>284 .0200 160 .177 .122 .315 .504 0.581</td>
</tr>
</tbody>
</table>
Specialized Profiles

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .050" Valve Lift</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUR. AT .050" VALVE LIFT</td>
<td>104 Deg. Intake</td>
<td>114 Deg. Exhaust</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEG.</td>
<td>IN.</td>
<td>300"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Engine Specific Profiles for Translating Follower SOHC and DOHC Applications

Honda DOHC 4-valve B16A I-4, mechanical series. Recommended lash is .006" intake and .008" exhaust. Use 8620 steel camshaft and Ferrea roller followers. (Crane 253 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>DUR. AT .050" VALVE LIFT</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHON-224/425</td>
<td>248 .0200</td>
<td>114 .077 .044</td>
<td>.277</td>
<td>.425</td>
<td>0.581</td>
</tr>
<tr>
<td>RHON-230/441</td>
<td>254 .0200</td>
<td>122 .090 .063</td>
<td>.287</td>
<td>.441</td>
<td>0.581</td>
</tr>
<tr>
<td>RHON-236/457</td>
<td>260 .0200</td>
<td>130 .102 .063</td>
<td>.297</td>
<td>.457</td>
<td>0.581</td>
</tr>
<tr>
<td>RHON-242/472</td>
<td>266 .0200</td>
<td>137 .116 .074</td>
<td>.307</td>
<td>.472</td>
<td>0.581</td>
</tr>
<tr>
<td>RHON-248/488</td>
<td>272 .0200</td>
<td>144 .131 .086</td>
<td>.317</td>
<td>.488</td>
<td>0.571</td>
</tr>
<tr>
<td>RHON-254/504</td>
<td>278 .0200</td>
<td>151 .146 .098</td>
<td>.326</td>
<td>.504</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-260/504</td>
<td>284 .0200</td>
<td>156 .162 .111</td>
<td>.326</td>
<td>.504</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-266/520</td>
<td>290 .0200</td>
<td>163 .181 .128</td>
<td>.336</td>
<td>.520</td>
<td>0.551</td>
</tr>
<tr>
<td>RHON-272/520</td>
<td>296 .0200</td>
<td>168 .194 .140</td>
<td>.336</td>
<td>.520</td>
<td>0.551</td>
</tr>
<tr>
<td>RHON-278/536</td>
<td>302 .0200</td>
<td>174 .212 .156</td>
<td>.347</td>
<td>.536</td>
<td>0.541</td>
</tr>
</tbody>
</table>

Honda DOHC VTEC 2.0L 4-valve K20 I-4, mechanical street series. Recommended valve lash is .009" intake and .012" exhaust. (Crane 254 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>DUR. AT .050" VALVE LIFT</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHON-206/374INT</td>
<td>233 .0200</td>
<td>87 .047</td>
<td>.2168</td>
<td>.374</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-240/410INT</td>
<td>266 .0200</td>
<td>120 .109</td>
<td>.2371</td>
<td>.410</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-258/524INT</td>
<td>284 .0200</td>
<td>157 .151</td>
<td>.3012</td>
<td>.524</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-262/536INT</td>
<td>288 .0200</td>
<td>161 .162</td>
<td>.3080</td>
<td>.536</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-266/548INT</td>
<td>292 .0200</td>
<td>166 .173</td>
<td>.3147</td>
<td>.548</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-206/374EXH</td>
<td>233 .0200</td>
<td>87 .024</td>
<td>.2160</td>
<td>.374</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-232/360EXH</td>
<td>258 .0200</td>
<td>93 .056</td>
<td>.2083</td>
<td>.360</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-254/500EXH</td>
<td>276 .0200</td>
<td>147 .093</td>
<td>.2842</td>
<td>.400</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-254/512EXH</td>
<td>280 .0200</td>
<td>152 .102</td>
<td>.2893</td>
<td>.512</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-258/524EXH</td>
<td>284 .0200</td>
<td>157 .111</td>
<td>.2970</td>
<td>.524</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-254/504EXH</td>
<td>288 .0200</td>
<td>150 .105</td>
<td>.2831</td>
<td>.5041</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-272/501EXH</td>
<td>300 .0200</td>
<td>163 .132</td>
<td>.2915</td>
<td>.5201</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-276/535EXH</td>
<td>304 .0200</td>
<td>167 .142</td>
<td>.2994</td>
<td>.535</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-284/615EXH</td>
<td>309 .0200</td>
<td>190 .179</td>
<td>.3447</td>
<td>.615</td>
<td>0.561</td>
</tr>
</tbody>
</table>

Honda DOHC VTEC 2.0L 4-valve K20 I-4, mechanical race series. Recommended valve lash is .009" intake and .012" exhaust. (Crane 254 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>DUR. AT .050" VALVE LIFT</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>RHON-258/545INT</td>
<td>286 .0200</td>
<td>157 .153</td>
<td>.3086</td>
<td>.545</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-276/550INT</td>
<td>304 .0200</td>
<td>172 .198</td>
<td>.3114</td>
<td>.550</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-280/570INT</td>
<td>308 .0200</td>
<td>176 .206</td>
<td>.3224</td>
<td>.570</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-284/615INT</td>
<td>308 .0200</td>
<td>190 .239</td>
<td>.3518</td>
<td>.615</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-292/640INT</td>
<td>317 .0200</td>
<td>198 .267</td>
<td>.3657</td>
<td>.640</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-260/554INT</td>
<td>288 .0200</td>
<td>150 .105</td>
<td>.2831</td>
<td>.5041</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-272/501EXH</td>
<td>300 .0200</td>
<td>163 .132</td>
<td>.2915</td>
<td>.5201</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-276/535EXH</td>
<td>304 .0200</td>
<td>167 .142</td>
<td>.2994</td>
<td>.535</td>
<td>0.561</td>
</tr>
<tr>
<td>RHON-284/615EXH</td>
<td>309 .0200</td>
<td>190 .179</td>
<td>.3447</td>
<td>.615</td>
<td>0.561</td>
</tr>
</tbody>
</table>

Mitsubishi DOHC 2.0L 4-valve 4G63 I-4 and the EVO VIII DOHC I-4, hydraulic roller series. (Crane 435 and 440 prefix)

<table>
<thead>
<tr>
<th>Profile Code</th>
<th>DUR. AT .050" VALVE LIFT</th>
<th>Valve Lift at Top Dead Center</th>
<th>Cam Lift</th>
<th>Gross Valve Lift with Zero Lash</th>
<th>Design Base Circle Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT-200/384</td>
<td>240 .0060</td>
<td>90 .032</td>
<td>.019</td>
<td>.221</td>
<td>.384</td>
</tr>
<tr>
<td>MIT-204/394</td>
<td>244 .0060</td>
<td>96 .038</td>
<td>.023</td>
<td>.227</td>
<td>.394</td>
</tr>
<tr>
<td>MIT-208/404</td>
<td>248 .0060</td>
<td>102 .045</td>
<td>.027</td>
<td>.233</td>
<td>.404</td>
</tr>
</tbody>
</table>

Continued on next page.
ENGINE SPECIFIC PROFILES FOR TRANSLATING FOLLOWER SOHC AND DOHC APPLICATIONS

MIT

Continued from previous page.

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT .050" VALVE LIFT</th>
<th>DUR. AT 300" VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIT-216/424</td>
<td>256 .0060</td>
<td>112 .060</td>
<td>.037</td>
<td>.245</td>
<td>.424</td>
<td>0.591</td>
</tr>
<tr>
<td>MIT-224/444</td>
<td>264 .0060</td>
<td>122 .077</td>
<td>.048</td>
<td>.256</td>
<td>.444</td>
<td>0.591</td>
</tr>
<tr>
<td>MIT-232/464</td>
<td>272 .0060</td>
<td>132 .096</td>
<td>.062</td>
<td>.268</td>
<td>.464</td>
<td>0.591</td>
</tr>
<tr>
<td>MIT-240/484</td>
<td>280 .0060</td>
<td>142 .117</td>
<td>.077</td>
<td>.280</td>
<td>.484</td>
<td>0.591</td>
</tr>
</tbody>
</table>

CHR2

Mitsubishi DOHC 4-valve 420A I-4, hydraulic roller series. (Crane 431 prefix)

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT .050" VALVE LIFT</th>
<th>DUR. AT 300" VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHR-196/345</td>
<td>238 .0060</td>
<td>68 .033</td>
<td>.12</td>
<td>.198</td>
<td>.345</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-200/354</td>
<td>242 .0060</td>
<td>76 .038</td>
<td>.16</td>
<td>.204</td>
<td>.354</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-204/364</td>
<td>246 .0060</td>
<td>82 .044</td>
<td>.19</td>
<td>.210</td>
<td>.364</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-208/374</td>
<td>250 .0060</td>
<td>88 .050</td>
<td>.23</td>
<td>.216</td>
<td>.374</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-216/394</td>
<td>258 .0060</td>
<td>100 .064</td>
<td>.34</td>
<td>.228</td>
<td>.394</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-224/413</td>
<td>266 .0060</td>
<td>112 .078</td>
<td>.44</td>
<td>.239</td>
<td>.413</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-232/433</td>
<td>274 .0060</td>
<td>122 .096</td>
<td>.057</td>
<td>.251</td>
<td>.433</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-240/453</td>
<td>282 .0060</td>
<td>132 .114</td>
<td>.070</td>
<td>.264</td>
<td>.453</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-248/472</td>
<td>290 .0060</td>
<td>142 .134</td>
<td>.087</td>
<td>.275</td>
<td>.472</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-256/492</td>
<td>298 .0060</td>
<td>152 .154</td>
<td>.104</td>
<td>.287</td>
<td>.492</td>
<td>0.591</td>
</tr>
<tr>
<td>CHR-264/492</td>
<td>306 .0060</td>
<td>158 .175</td>
<td>.123</td>
<td>.287</td>
<td>.492</td>
<td>0.579</td>
</tr>
<tr>
<td>CHR-268/492</td>
<td>310 .0060</td>
<td>161 .185</td>
<td>.133</td>
<td>.287</td>
<td>.492</td>
<td>0.573</td>
</tr>
<tr>
<td>CHR-272/500</td>
<td>314 .0060</td>
<td>166 .196</td>
<td>.144</td>
<td>.292</td>
<td>.500</td>
<td>0.567</td>
</tr>
<tr>
<td>CHR-290/550</td>
<td>334 .0060</td>
<td>186 .244</td>
<td>.190</td>
<td>.323</td>
<td>.550</td>
<td>0.540</td>
</tr>
</tbody>
</table>

PORLD

Porsche 911 and 930 SOHC opposed-6, mechanical series, using standard rocker arms, with 49 mm diameter cam journals. Recommended cold lash is .004".

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT .050" VALVE LIFT</th>
<th>DUR. AT 300" VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>POR-230/430</td>
<td>270 .0120</td>
<td>.2890</td>
<td>.430</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-238/444</td>
<td>278 .0120</td>
<td>.2983</td>
<td>.444</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-248/462</td>
<td>288 .0120</td>
<td>.3101</td>
<td>.462</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-256/476</td>
<td>296 .0120</td>
<td>.3193</td>
<td>.476</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-266/494</td>
<td>306 .0120</td>
<td>.3312</td>
<td>.494</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-274/508</td>
<td>314 .0120</td>
<td>.3423</td>
<td>.508</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
<tr>
<td>POR-284/526</td>
<td>324 .0120</td>
<td>.3542</td>
<td>.529</td>
<td>.624</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOY

Toyota 20R-22R SOHC I-4, mechanical series, using cast rocker arms and stock length valves. Recommended lash is .010" intake and .012" exhaust. (Crane 704 prefix)

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>ADVERTISED DUR. AT .050" VALVE LIFT</th>
<th>DUR. AT 300" VALVE LIFT</th>
<th>VALVE LIFT AT TOP DEAD CENTER</th>
<th>CAM LIFT</th>
<th>GROSS VALVE LIFT WITH ZERO LASH</th>
<th>DESIGN BASE CIRCLE RADIUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T20-214/416</td>
<td>262 .0100</td>
<td>110 .062</td>
<td>.029</td>
<td>.269</td>
<td>.416</td>
<td>0.706</td>
</tr>
<tr>
<td>T20-224/430</td>
<td>272 .0100</td>
<td>120 .083</td>
<td>.043</td>
<td>.278</td>
<td>.430</td>
<td>0.701</td>
</tr>
<tr>
<td>T20-234/444</td>
<td>282 .0100</td>
<td>130 .107</td>
<td>.061</td>
<td>.287</td>
<td>.444</td>
<td>0.697</td>
</tr>
<tr>
<td>T20-244/458</td>
<td>292 .0100</td>
<td>140 .133</td>
<td>.083</td>
<td>.296</td>
<td>.458</td>
<td>0.692</td>
</tr>
<tr>
<td>T20-254/472</td>
<td>302 .0100</td>
<td>152 .160</td>
<td>.107</td>
<td>.305</td>
<td>.472</td>
<td>0.688</td>
</tr>
<tr>
<td>T20-264/430</td>
<td>304 .0100</td>
<td>150 .179</td>
<td>.130</td>
<td>.282</td>
<td>.430</td>
<td>0.688</td>
</tr>
</tbody>
</table>
HARLEY DAVIDSON® V2 APPLICATIONS

<table>
<thead>
<tr>
<th>PROFILE CODE</th>
<th>DUR. AT .053" LOBE LIFT</th>
<th>ADVERTISED DUR. AT TAPPET LIFT</th>
<th>DUR. AT .200" TAPPET LIFT</th>
<th>TAPPET LIFT AT TOP DEAD CENTER</th>
<th>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DEG.</td>
<td>IN.</td>
<td>114 DEG. INTAKE</td>
<td>114 DEG. EXHAUST</td>
<td>1.60</td>
</tr>
</tbody>
</table>

HARLEY DAVIDSON® EVOLUTION V2 HYDRAULIC ROLLER SERIES

HEV490

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-226/3064</td>
<td>HEV-226/3064</td>
<td>270 .014</td>
<td>136 .077</td>
<td>.053</td>
<td>.490</td>
<td></td>
</tr>
<tr>
<td>HEV-236/3064</td>
<td>HEV-236/3064</td>
<td>280 .014</td>
<td>144 .094</td>
<td>.066</td>
<td>.490</td>
<td></td>
</tr>
<tr>
<td>HEV-242/3064</td>
<td>HEV-242/3064</td>
<td>286 .014</td>
<td>147 .104</td>
<td>.075</td>
<td>.490</td>
<td></td>
</tr>
<tr>
<td>HEV-252/3064</td>
<td>HEV-252/3064</td>
<td>296 .014</td>
<td>153 .118</td>
<td>.090</td>
<td>.490</td>
<td></td>
</tr>
</tbody>
</table>

HEV550

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-226/344</td>
<td>HEV-226/344</td>
<td>270 .014</td>
<td>140 .074</td>
<td>.053</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>HEV-236/344</td>
<td>HEV-236/344</td>
<td>286 .014</td>
<td>148 .090</td>
<td>.065</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>HEV-246/344</td>
<td>HEV-246/344</td>
<td>298 .014</td>
<td>156 .104</td>
<td>.077</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>HEV-254/344</td>
<td>HEV-254/344</td>
<td>306 .014</td>
<td>163 .118</td>
<td>.088</td>
<td>.550</td>
<td></td>
</tr>
<tr>
<td>HEV-256/344</td>
<td>HEV-256/344</td>
<td>311 .014</td>
<td>169 .131</td>
<td>.098</td>
<td>.550</td>
<td></td>
</tr>
</tbody>
</table>

HEV581

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-236/363</td>
<td>HEV-236/363</td>
<td>286 .014</td>
<td>149 .090</td>
<td>.065</td>
<td>.581</td>
<td></td>
</tr>
<tr>
<td>HEV-240/363</td>
<td>HEV-240/363</td>
<td>290 .014</td>
<td>153 .097</td>
<td>.070</td>
<td>.581</td>
<td></td>
</tr>
<tr>
<td>HEV-248/363</td>
<td>HEV-248/363</td>
<td>298 .014</td>
<td>160 .110</td>
<td>.082</td>
<td>.581</td>
<td></td>
</tr>
<tr>
<td>HEV-252/363</td>
<td>HEV-252/363</td>
<td>302 .014</td>
<td>165 .117</td>
<td>.087</td>
<td>.581</td>
<td></td>
</tr>
</tbody>
</table>

HEV600

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-246/375</td>
<td>HEV-246/375</td>
<td>296 .014</td>
<td>160 .107</td>
<td>.079</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HEV-254/375</td>
<td>HEV-254/375</td>
<td>304 .014</td>
<td>167 .121</td>
<td>.091</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HEV-260/375</td>
<td>HEV-260/375</td>
<td>310 .014</td>
<td>172 .132</td>
<td>.100</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HEV-262/375</td>
<td>HEV-262/375</td>
<td>314 .014</td>
<td>173 .132</td>
<td>.100</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HEV-265/375</td>
<td>HEV-265/375</td>
<td>317 .014</td>
<td>175 .137</td>
<td>.104</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HEV-266/375</td>
<td>HEV-266/375</td>
<td>316 .014</td>
<td>177 .142</td>
<td>.110</td>
<td>.600</td>
<td></td>
</tr>
</tbody>
</table>

HEV630

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-262/394</td>
<td>HEV-262/394</td>
<td>308 .014</td>
<td>183 .147</td>
<td>.108</td>
<td>.630</td>
<td></td>
</tr>
<tr>
<td>HEV-265/394</td>
<td>HEV-265/394</td>
<td>311 .014</td>
<td>185 .153</td>
<td>.113</td>
<td>.630</td>
<td></td>
</tr>
<tr>
<td>HEV-270/394</td>
<td>HEV-270/394</td>
<td>316 .014</td>
<td>190 .163</td>
<td>.123</td>
<td>.630</td>
<td></td>
</tr>
<tr>
<td>HEV-276/394</td>
<td>HEV-276/394</td>
<td>322 .014</td>
<td>195 .174</td>
<td>.134</td>
<td>.630</td>
<td></td>
</tr>
</tbody>
</table>

HEV650

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-254/406</td>
<td>HEV-254/406</td>
<td>304 .014</td>
<td>171 .122</td>
<td>.090</td>
<td>.650</td>
<td></td>
</tr>
<tr>
<td>HEV-266/406</td>
<td>HEV-266/406</td>
<td>316 .014</td>
<td>186 .145</td>
<td>.109</td>
<td>.650</td>
<td></td>
</tr>
<tr>
<td>HEV-278/406</td>
<td>HEV-278/406</td>
<td>330 .014</td>
<td>190 .163</td>
<td>.126</td>
<td>.650</td>
<td></td>
</tr>
<tr>
<td>HEV-286/406</td>
<td>HEV-286/406</td>
<td>338 .014</td>
<td>197 .178</td>
<td>.140</td>
<td>.650</td>
<td></td>
</tr>
</tbody>
</table>

HEV680

<table>
<thead>
<tr>
<th>Code</th>
<th>Profile Code</th>
<th>DUR. At .053" Lobe Lift</th>
<th>Advertised Dur. at Tappet Lift</th>
<th>Dur. at .200" Tappet Lift</th>
<th>Tappet Lift at Top Dead Center</th>
<th>Gross Valve Lift with Zero Lash at Theoretical Rocker Ratio Shown</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEV-262/425</td>
<td>HEV-262/425</td>
<td>314 .014</td>
<td>175 .132</td>
<td>.100</td>
<td>.680</td>
<td></td>
</tr>
<tr>
<td>HEV-265/425</td>
<td>HEV-265/425</td>
<td>317 .014</td>
<td>178 .137</td>
<td>.105</td>
<td>.680</td>
<td></td>
</tr>
<tr>
<td>PROFILE CODE</td>
<td>ADVERTISED DUR. AT TAPPET LIFT</td>
<td>DUR. AT .200" TAPPET LIFT</td>
<td>TAPPET LIFT AT TOP DEAD CENTER</td>
<td>GROSS VALVE LIFT WITH ZERO LASH AT THEORETICAL ROCKER RATIO SHOWN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
<td>--------------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC505</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-220/306</td>
<td>255</td>
<td>.0200</td>
<td>129</td>
<td>.068 .044</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>HTC-226/306</td>
<td>261</td>
<td>.0200</td>
<td>134</td>
<td>.077 .051</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>HTC-236/306</td>
<td>271</td>
<td>.0200</td>
<td>141</td>
<td>.092 .063</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>HTC-242/306</td>
<td>277</td>
<td>.0200</td>
<td>145</td>
<td>.102 .071</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>HTC-252/306</td>
<td>287</td>
<td>.0200</td>
<td>152</td>
<td>.118 .086</td>
<td>.505</td>
<td></td>
</tr>
<tr>
<td>HTC538</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-254/326</td>
<td>289</td>
<td>.0200</td>
<td>160</td>
<td>.114 .090</td>
<td>.538</td>
<td></td>
</tr>
<tr>
<td>HTC570</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-240/3456</td>
<td>275</td>
<td>.0200</td>
<td>153</td>
<td>.099 .070</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td>HTC-248/3456</td>
<td>283</td>
<td>.0200</td>
<td>159</td>
<td>.113 .081</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td>HTC-252/3456</td>
<td>287</td>
<td>.0200</td>
<td>162</td>
<td>.119 .087</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td>HTC-262/3456</td>
<td>297</td>
<td>.0200</td>
<td>170</td>
<td>.136 .103</td>
<td>.570</td>
<td></td>
</tr>
<tr>
<td>HTC600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-254/3637</td>
<td>290</td>
<td>.0200</td>
<td>166</td>
<td>.121 .088</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HTC-260/3637</td>
<td>296</td>
<td>.0200</td>
<td>172</td>
<td>.132 .097</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HTC-266/3637</td>
<td>302</td>
<td>.0200</td>
<td>177</td>
<td>.143 .107</td>
<td>.600</td>
<td></td>
</tr>
<tr>
<td>HTC619</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-246/375</td>
<td>296</td>
<td>.0140</td>
<td>160</td>
<td>.107 .079</td>
<td>.619</td>
<td></td>
</tr>
<tr>
<td>HTC-254/375</td>
<td>304</td>
<td>.0140</td>
<td>167</td>
<td>.121 .091</td>
<td>.619</td>
<td></td>
</tr>
<tr>
<td>HTC660</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-246/4001</td>
<td>281</td>
<td>.0200</td>
<td>164</td>
<td>.111 .079</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td>HTC-254/4001</td>
<td>289</td>
<td>.0200</td>
<td>171</td>
<td>.126 .091</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td>HTC-258/4001</td>
<td>291</td>
<td>.0200</td>
<td>175</td>
<td>.133 .098</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td>HTC-260/4001</td>
<td>295</td>
<td>.0200</td>
<td>177</td>
<td>.137 .101</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td>HTC-266/400</td>
<td>301</td>
<td>.0200</td>
<td>183</td>
<td>.149 .100</td>
<td>.660</td>
<td></td>
</tr>
<tr>
<td>HTC670</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTC-270/406</td>
<td>305</td>
<td>.0200</td>
<td>186</td>
<td>.156 .119</td>
<td>.670</td>
<td></td>
</tr>
<tr>
<td>HTC-274/406</td>
<td>309</td>
<td>.0200</td>
<td>190</td>
<td>.164 .126</td>
<td>.670</td>
<td></td>
</tr>
</tbody>
</table>
Personal Information

<table>
<thead>
<tr>
<th>Name:</th>
<th>Email Address:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Address:</th>
<th>Telephone Number:</th>
<th>Fax:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Cam Interested In:</th>
<th>Hydraulic</th>
<th>Hydraulic Roller</th>
<th>Mechanical</th>
<th>Mechanical Roller</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Information

<table>
<thead>
<tr>
<th>Make:</th>
<th>Year:</th>
<th>Weight:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Computer Controlled</th>
<th>Emissions Controlled Without Computer</th>
<th>Non-Emissions Controlled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vehicle Use

- Street
- Street/Strip
- Off Road
- Towing

Marine Use

<table>
<thead>
<tr>
<th>Hull Type:</th>
<th>Length:</th>
<th>Weight:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drive:</th>
<th>Jet</th>
<th>Prop</th>
<th>Explain:</th>
<th>Wet</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exhaust System:</th>
<th>Brand:</th>
<th>Wet</th>
<th>Dry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Does Exhaust Exit:</th>
<th>Above Water Line</th>
<th>Below Water Line</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Options

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3000–6000</td>
<td>3500–6500</td>
<td>4000–7000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Engine Idle Characteristics:</th>
<th>Smooth</th>
<th>Choppy</th>
<th>Rough</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Computer controlled vehicles must use smooth idle camshafts only.

Engine Information

<table>
<thead>
<tr>
<th>Make:</th>
<th>Year:</th>
<th>Number of Cylinders:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cubic Inches:</th>
<th>Compression Ratio:</th>
<th>Cylinder Head Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ported:</th>
<th>Yes</th>
<th>No</th>
<th>Value Size:</th>
<th>Int.</th>
<th>Exh.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rocker Arm Type:</th>
<th>Stock</th>
<th>Roller</th>
<th>Rocker Ratio:</th>
<th>Int.</th>
<th>Exh.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intake Manifold Type:</th>
<th>Carburetor:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Injection:</th>
<th>Speed Density</th>
<th>Mass Air</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrous Oxide System:</th>
<th>Supercharger Type:</th>
<th>Drive Ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turbocharger Type:</th>
<th>P.S.I. Boost:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cranking Compression P.S.I.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transmission Model:</th>
<th>Standard</th>
<th>Automatic</th>
<th>Automatic With Overdrive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Converter Stall Speed:</th>
<th>Rear Gear Ratio:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cruise RPM @ 60 MPH:</th>
<th>Tire Diameter/Size:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cam Now Used:</th>
<th>Part Number:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HACRAILY HYDRAULIC ROLLER MECHANICAL MECHANICAL ROLLER</td>
<td></td>
</tr>
<tr>
<td>HYDRAULIC HYDRAULIC ROLLER MECHANICAL MECHANICAL ROLLER</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lobe Separation:</th>
<th>Improvement Needed:</th>
<th>Low End Torque</th>
<th>Upper RPM Power</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
